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• A key problem in computational material science deals with understanding the effect of material distribution (i.e.,
microstructure) on material performance. 

• The challenge we consider here is to synthesize microstructures with desired physical and chemical properties, given a finite 
number of microstructure images, evaluated based on the physical invariances that the microstructure exhibits. 

• Conventional approaches are based on stochastic optimization and are computationally intensive. 

• We introduce Machine learning based generative models for the fast synthesis of binary microstructure images. 

• Our model is a Wasserstein Generative Adversarial Network that uses a finite number of training images to synthesize new 
microstructures that satisfy the physical invariances respected by the original data.

• For the training of our model, we curated a dataset of Binary 2D microstructural images of polymer phase separation. We 
made our dataset available publically.

Objective

• In this presentation, we discuss:

1. Details of dataset generation

2. Physical invariances under consideration: volume fraction and two-point correlation

3. Introduction to deep generative adversarial networks (GANs) and our method.

4. Microstructure images generated by our WGAN model, and their analysis

5. Conclusion on usefulness and effectiveness of our model



We curated a dataset of Binary 2D microstructural images of polymer phase separation (CH - dataset). 

1.1 Dataset

• This dataset was generated through the simulation of a time evolving Cahn -Hilliard equation [1], 

describing phase separation in binary polymer blends. Thus, we call it CH-dataset.

• Several realizations of the equation were done through different values of volume fractions and binary 

interaction parameters. 

• Morphologies were outputted at constant time intervals.

Details of the dataset Samples from the dataset

• Collection of 34672 grayscale images, 

• resolution of each image is 101x101.

• Each pixel takes a floating point value between 0 and 1.

• Dataset and supporting code is made public at:

https://zenodo.org/record/2580293

https://zenodo.org/record/2580293


dataset was generated through the simulation of a time evolving Cahn -Hilliard equation [1]:
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1.2 Dataset Generation

• Simulations were performed on a 101×101 (pixels) square domain, for 10 values of 𝜒𝜒12 ∈ 2.2, 3.4 ; 

10 values of total volume fraction  𝜕𝜕0 = ∫Ω𝜕𝜕𝜙𝜙Ω ∈ [0.3, 0.5]. Also,  𝜖𝜖 = 1𝑒𝑒 − 2, 𝑙𝑙𝑥𝑥, 𝑙𝑙𝑦𝑦 = 1, 𝑀𝑀 = 1 , 𝜙𝜙𝜕𝜕 = 1𝑒𝑒 − 3.

• Data was saved after every prescribed number of time steps (20 time steps).

• Data was then augmented by reflecting and flipping the phases(black/white)

• Because data was generated using an energy dissipating equation, data generated using one simulation has:
– The same (volume) fraction for all times (∫Ω𝜕𝜕𝜙𝜙Ω = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜕𝜕𝑐𝑐𝑐𝑐𝜕𝜕 ∀ 𝜕𝜕),

– With increasing time, the average domain size increases as 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 ∝ 𝜕𝜕
1
3 . i.e., 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎increases with time.



We consider the underlying material to be a two-phase homogeneous, isotropic material.
Our setup for statistical characterization of microstructure follows with [2]. 

2. Physical Invariances

Distribution of volume fraction for our dataset

• A phase function 𝜕𝜕 1 (. ) is used to characterize this two-phase system, defined as:

where 𝑉𝑉1 is the region occupied by phase 1 and 𝑉𝑉2 is the region occupied by phase 2.

• The 1-point correlation function, 𝑝𝑝1
(1), commonly known as volume fraction, is defined as:

• The two-point correlation function, 𝑝𝑝21 , is defined as:

𝜕𝜕(1) 𝒓𝒓 = �
1, 𝒓𝒓 ∈ 𝑉𝑉1,
0, 𝒓𝒓 ∈ 𝑉𝑉2,

𝑝𝑝1
(1) = 𝔼𝔼𝒓𝒓𝜕𝜕(1)(𝒓𝒓)

𝑝𝑝2
1 𝑟𝑟12 = 𝔼𝔼𝒓𝒓𝟏𝟏,𝒓𝒓𝟐𝟐[𝜕𝜕 1 (𝒓𝒓𝟏𝟏) 𝜕𝜕 1 (𝒓𝒓𝟐𝟐)]

• Our aim is to synthesize microstructures that satisfy certain 

target statistical properties of the material distribution. 

• We choose these statistical properties to be total volume 

fraction of a material (p1) and 2-point correlation (p2).



The basic idea of GANs is to set up a minimax game between two players: generator and discriminator [4].

3.1 Introduction to Generative Adversarial Networks [4]

min
𝐺𝐺

max
𝐷𝐷

𝑉𝑉 𝐷𝐷,𝐺𝐺 = 𝐸𝐸𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)[𝑙𝑙𝑐𝑐𝑙𝑙𝐷𝐷(𝑥𝑥)] + 𝐸𝐸𝑧𝑧~𝑝𝑝𝑧𝑧(𝑧𝑧)[log(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧)))]

• We can think of the generator as being like a forger, trying to make fake wine, 

and the discriminator as being like wine-shop owner, trying to allow legitimate 

wines and catch fake wines. 

• To succeed in this game, the forger must learn to make wine that is 

indistinguishable from genuine wine implying that the generator network must 

learn to create samples that are drawn from the same distribution as the 

training data.

GAN model

Image credits: (left) datacamp blog, (right) GAN tutorial by Ian Goodfellow



We use our CH dataset as the training data for a improved version of GAN – called Wasserstein GAN with Gradient Penalty [5].

3.2 Our methodology

• Using the Cahn-Hilliard (CH) dataset, we prepare two smaller datasets referred as 

CHp1 and CHp2 by segregating the images based on their p1 and p2 values 

respectively. 

• The first subset CHp1 is a collection of all images of CH dataset having a volume 

fraction (p1) value between 0.35 to 0.45. 

• The second subset is segregated on the basis of p2 values of images, and contain 

all the images from CH dataset having 2−point correlation (p2) value equal to 

0.0625. 

• We train 3 WGAN-GP using CH, CHp1 and CHp2 as the training data respectively. 

• As these segregated datasets typically contain images with similar statistical 

properties (either p1 or p2), we can testify the ability of our model to preserve 

such properties by observing the p1 or p2 values of the images generated by 

these 3 networks.

WGAN-GP-CH

•Trained over CH 
dataset that 
contains all 34672 
images covering 
entire range of p1 
and p2.

WGAN-GP-CHp1

•Trained over CHp1 
dataset with ~6000 
images of CH 
dataset having a 
volume fraction (p1) 
value between 0.35 
to 0.45.

WGAN-GP-CHp2

•Trained over CHp2 
dataset with~3000 
images of CH 
dataset having a (p2) 
value equal to 
0.0625. 



Our trained WGAN-GP models are able to generate microstructures closely resembling the real 
microstructures. Moreover, these generated microstructures respect the statistical constraints (p1 and p2 )

4.1 Results



We analyze (i) the statistical properties of the generated miscrostructures; (ii) interpolation behavior of our 
trained WGAN models; (iii) Free energy of generated microstructures to present interesting findings.

4.2 Analysis of the Results

• Fig. 3 provides the density plots/histograms of p1 and p2 values of the images for both training data and generated data. 
• The striking similarities in the spread of both the density plots/histograms suggest that our network successfully reproduces the statistical 

properties of the real (training) images in the simulated images.
• In Fig. 3 (a,b), densities of p1 value is compared between the real data and generated data for network trained on CH dataset and CHp1 

dataset. 
• We provide the histogram for p2 values for models trained using CHp2 in Fig. 3 (c). Both the histograms closely match.



We display interesting behavior of the learned image manifold through results of interpolation over latent vectors z

4.3 Analysis of the Results

• Randomly pick two different noise vectors z1
and z2, and linearly interpolate between them 
to obtain 10 more such noise vectors. All 12 
images are plotted as in Fig. 4.

• Very interestingly, we observe that an unseen 
invariance of energy minimization is captured in the 
interpolation. As shown in Fig. 5 (b), the free energy 
of the morphologies decreases as the we move 
from one interpolation step to the next.

• In this process, the volume fraction (p1) is also 
preserved within reasonable limits. This suggests 
that the WGAN framework is able to learn latent 
physical rules from the dataset. 

• Such behavior can effectively be used to decide 
series of manufacturing processes for obtaining final 
morphology from initial morphology without adding 
any new material.



• We curated a Binary 2D microstructural images of polymer phase separation (CH - dataset) by solving CH equations and

successfully used it with a machine learning model that approaches computational results in microstructure synthesis tasks.

• We also made our dataset publically available.

• We train three different WGAN models with full or subset of our CH dataset. We show that the generated images respect

the distribution of certain physical invariances - specifically, can be used for synthesizing a promising new material that meets

a desired performance target.

• We analyze our results to come up with interesting properties of our trained WGAN models such as interpolation and free

energy reduction behavior and explore previously unknown correlations in process–structure–property linkages.

5. Conclusion
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