# **Near-perfect GAN Inversion**

#### GANs

















#### GANs: Smooth Image Manifold



#### GANs: Image editing



Possible to edit *any* face image?





Images from InterFaceGAN

# Pipeline for Editing Unseen Image via GANs

**Image Generation** 

Achieve a capability to **generate** diverse set of photo-realistic images Image Inversion

Locate the given unseen image in the range of the Generator **Image Manipulation** 

**Traverse** the Generator space to obtain **meaningful** image manipulations

Tasks are not necessarily sequential.

Can be tackled separately.

## **Typical GAN setup**



# Image Inversion: Common Techniques [1]

- Invert a given image back into the latent space
- Several methods:
  - Optimization based
  - Learning based
- Can be done in any **intermediate** latent space



### Image Inversion: Common Techniques

- **Optimize** a loss function over z:
  - $z^* = \underset{z}{\operatorname{argmin}} l(x, G(z; \theta))$

**Iterative** methods mainly using gradient descent Highly non-covex, computationally **expensive** 

• Learning-based method:

Train encoder-decoder model



#### Image Inversion: Prior Work

• State-of-the-art learning-based method: Restyle-encoder [2]



#### Image Inversion: Most techniques fail on Unseen Images



# Idea: Fine tuning the Generator

- Initial estimate is obtained using a learning-based method
- Generator is **fine-tuned** so that the given image lies on the Generator manifold
- Key is to update the Generator manifold **without** affecting the disentanglement characteristics



### How to preserve photo-realism in fine-tuning?

#### Reconstruction

Most loss functions **ignore highfrequencies** thus, use: **Laplacian Pyramids** 

 $L_{recon} = Lap. Pyd. (x, G(z))$ 

#### Photo-realism

Degree of realism **is governed by Discriminator** Thus, Use: **Discriminator Loss** 

 $L_{adv\_local} = log(D(x)) + log(1 - D(G(z)))$ 

### How to prevent overfitting?

• Key is to update the Generator manifold **without affecting the disentanglement** characteristics

#### **Global Cohesion Loss**

Use Discriminator Loss on other parts of the GAN manifold

$$L_{global} = \mathbb{E}_{x} \left[ log(D(x)) \right] + \mathbb{E}_{z} \left[ log \left( 1 - D(G(z)) \right) \right]$$

$$L_{total} = \mathbb{I}_p[L_{local} + L_{adv_{local}}] + L_{global}$$

#### Results: FFHQ dataset





Original



ReStyle















Ensemble









#### Most off-the-shelf Editing methods works!



Using StyleSpace [7]



#### Some quantitative results

| Dataset                      | CelebA-HQ         |                 | Stanford Cars     |                   | AFHQ-Wild         |                 | LSUN-Horse        |                   |
|------------------------------|-------------------|-----------------|-------------------|-------------------|-------------------|-----------------|-------------------|-------------------|
| Metric                       | MSE               | LPIPS           | MSE               | LPIPS             | MSE               | LPIPS           | MSE               | LPIPS             |
| Projection <sup>o</sup> [22] | .074 ±.055        | .429 ±.044      | .318 ±.120        | $.486 \pm .067$   | $.126 \pm .066$   | .491 ±.036      | $.240 \pm .195$   | $.454 \pm .072$   |
| ReStyle <sup>E</sup> [4]     | $.050 \pm .019$   | $.475 \pm .038$ | $.082 \pm .035$   | $.352 \pm .063$   | $.085 \pm .039$   | $.509 \pm .037$ | $.159 \pm .070$   | $.525 \pm .071$   |
| BDInvert <sup>E</sup> [16]   | $.016 \pm .080$   | $.373 \pm .040$ | -                 | -                 | -                 | -               | -                 | -                 |
| HFGI <sup>E</sup> [34]       | $.032 \pm .054$   | $.423 \pm .045$ | -                 | -                 | -                 | -               | -                 | -                 |
| Ensemble <sup>H</sup> [11]   | $.017 \pm .011$   | $.373 \pm .038$ | $.284 \pm .025$   | .448 ±.053        | -                 | -               | -                 | -                 |
| Ours                         | <b>.004</b> ±.006 | $.283 \pm .050$ | <b>.006</b> ±.007 | <b>.154</b> ±.046 | <b>.014</b> ±.013 | $.382 \pm .087$ | <b>.005</b> ±.009 | <b>.141</b> ±.043 |

#### Ablation on FFHQ

| Loss            | full | w/o $\mathcal{L}_{recon}$ | w/o $\mathcal{L}_{adv\_local}$ | w/o $\mathcal{L}_{\text{global}}$ |
|-----------------|------|---------------------------|--------------------------------|-----------------------------------|
| $MSE\downarrow$ | .050 | .155                      | .080                           | .052                              |
| $FID\downarrow$ | 5.21 | 3.04                      | 4.13                           | <b>164.7</b>                      |
|                 |      |                           |                                |                                   |

#### Original



#### Eye-glasses



#### Angry



#### Smile



# What can a pre-trained StyleGAN2 generate?

 Consider a StyleGAN2 model trained on FFHQ dataset.





- Can it generate out-of-domain images such as,
  - Sketches or Statues



#### Can be obtained by fine-tuning...



### References

[VS+18] V. Shah and C. Hegde. "Solving Linear Inverse Problems using GAN Priors: An Algorithm with Provable Guarantees". In: Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP). 2018.

[Kar+17] Tero Karras et al. "Progressive growing of gans for improved quality, stability, and variation". In: arXiv preprint arXiv:1710.10196. 2017.

[Xia+21] W. Xia et al. GAN Inversion: A Survey, In: arXiv, 2021.

[Bor+17] A. Bora et al. "Compressed Sensing using Generative Models". In: Proc. Int. Conf. Machine Learning. 2017.

[Goo+14] I. Goodfellow et al. "Generative adversarial nets". In: Proc. Adv. in Neural Processing Systems (NIPS). 2014.

[EA+20] Erik Harkornen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. Ganspace: Discovering interpretable gan controls. arXiv.

[ZD+21] Z. Wu, D. Lischinski, E. Shechtman, Disentangled Controls for StyleGAN Image Generation, arXiv