Near-perfect GAN Inversion
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GANs: Smooth Image Manifold
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GANs: Image editing

Possible to edit
any

face image?

Images from InterFaceGAN
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Pipeline for Editing Unseen Image via GANs

Image Generation

Achieve a capability Locate the given Traverse the
to generate diverse set unseen image in the Generator space to
of photo-realistic range of the obtain meaningful
images Generator image manipulations

Tasks are not necessarily sequential.

Can be tackled separately.



Typical GAN setup
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Image from GAN Inversion: A Survey, Xia et al. arXiv ‘21



https://arxiv.org/pdf/2101.05278.pdf

Image Inversion: Common Techniques [1]

* Invert a given image back into the latent space
Unseen Image (x)

e Several methods:

* Learning based

: . . G Generator
e Can be done in any intermediate latent space / \

7% — a Latent code (Z)

e Optimization based l




Image Inversion: Common Techniques

e Optimize a loss function over z:
e z* = argminl(x,G(z;0))
Z

Iterative methods mainly using gradient descent

Highly non-covex, computationally expensive

* Learning-based method:

Train encoder-decoder model

Optimization-based

Learning-based

Hybrid

Image from GAN Inversion: A Survey, Xia et al. arXiv ‘21



https://arxiv.org/pdf/2101.05278.pdf

Image Inversion: Prior Work

* State-of-the-art learning-based method: Restyle-encoder [2]
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Image from Restyle Encoder, Alaluf et al., ICCV’21



https://yuval-alaluf.github.io/restyle-encoder/

Image Inversion:
Most techniques fail on Unseen Images

Original Projection [3] ReStyle [2] BDinvert [4] HFGI [5] Ensemble [6]




ldea: Fine tuning the Generator

(a) Query Image (b) Our inversion, x*
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Initial estimate is obtained using a

Ee =\
learning-based method
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(c) X on G()

Generator is fine-tuned so that the given image
lies on the Generator manifold

Key is to update the Generator manifold without £ A& !
affecting the disentanglement characteristics y- g I S
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How to preserve photo-realism in fine-tuning?

Reconstruction

Most loss functions ignore high- Degree of realism is governed
frequencies by Discriminator
thus, Thus,
use: Laplacian Pyramids Use: Discriminator Loss

Lyocon = Lap.Pyd. (x,G(z))

L adv local —

log (D(x)) + log (1 — D(G(2)))



How to prevent overfitting?

Key is to update the Generator manifold without affecting the disentanglement characteristics

Use Discriminator Loss on other parts of the GAN manifold

Lgiobar = Ex [log(D(x))] + E,[log (1 — D(G(2)))]

Liotal = Hp [Liocar + Ladvlocal] + Lglobal



Results: FFHQ dataset

Original Projection ReStyle BDInvert




Original Projection




Most off-the-shelf Editing methods works!

Lipstick

o~

Using StyleSpace [7]



N o Style space edits . InterfaceGAN edits
a) Original , :  (c) Lipstick d) Eye gaze ! ) Age (f) P _(g) Mouth




Some quantitative results

Dataset CelebA-HQ Stanford Cars AFHQ-Wild LSUN-Horse
Metric MSE LPIPS MSE LPIPS MSE LPIPS MSE LPIPS
Projection © [22] .074 £.055 429 +.044 318 £.120 .486+.067 .126 £.066 .491 +.036 .240 £.195 .454 +.072
ReStyle © [4] 050 +£.019 475+.038 .082 +.035 .352+.063 .085+.039 .509 +.037 .159 +.070 .525 +.071
BDInvert E[16]  .016 +.080 .373 +.040 - - - - - -
HFGI F [24] 032 +£.054 .423 +.045 = - = - = -
Ensemble " [11]  .017 +.011 .373 +.038 .284 +.025 .448 +.053 - - - -
Ours 004 +.006 .283 +.050| .006 +.007 .154 +.046 .014 +.013 .382 +.087 .005 +.009 .141 +.043
Ablation on FFHQ

Loss full  w/0o Lrecon W/O Lagviocat W/0 Lgiobal

MSE | .050 155 .080 052

FID| 5.21 3.04 4.13 164.7
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What can a pre-trained StyleGAN2 generate?

 Consider a StyleGAN2 model trained on * Can it generate out-of-domain
FFHQ dataset. images such as,

:  Sketches or Statues

Latent codes
l v 4y I Latent codes

/ G \ Generator *
/ G/G \ Generator

Generated Images [Kar+19] |

-
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Can be obtained by fine-tuning...

Original Ours (edlts)

‘,

Ours (inversion)
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