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Introduction



Introduction: Inverse problems
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Quantity Observations

Forward model

Inverse model

Forward Problem: given quantity, determine observations;
Inverse Problem: given observations, recover quantity.

Example
Quantity: mass of the earth;

Observations: earth’s gravitational field.

Imaging, optics, astrophysics, and seismic geo-exploration,...



Introduction: Inverse problems in imaging
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Image Inpainting Image Denoising

Super-resolutionCompressive Sensing

Phase Retrieval

Generic Linear Measurements

Generic Phaseless Measurements

Image,
x∗ ∈ Rn

Forward model,
F

Observations,
F(x∗) = y ∈ Rm

Inverse problem

Goal is to recover x∗ , given the F and y.



Introduction: Inverse problems are ill-posed
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Generic

Linear

Measurements

Image Denoising Image Inpainting Compressive Sensing Super-resolution
F(x) = Inx + e F(x) = pixel-wise

selection
F(x) =

Fm×nx,m << n
F(x) = lowpass +
downsampling

Inverse Recovery is ill-posed



Introduction: Compressive sensing
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Compressive Sensing
(with Gaussian measurements)

Fmxny =

x*
 

m<n

F ∈ Rm×n ; with m < n, infinite many solutions.

Additional information about x∗ is required!

Assume: x∗ exhibits a structure that is known apriori

Solve a constrained optimization problem:

x̂ = argmin ‖y − Fx‖22, (1)

s. t. x ∈ S.

S is a set of all images that obeys the given prior



Related Work



Related Work: Various priors

Hand-crafted Priors

Total variation [ROF92; Cha04]

Sparsity [Can+06]

Structured sparsity [HIS15]

Dictionaries [EA06]

Learned Priors

End-to-end learning [MPB15]

Generative priors [Bor+17]

Deep Image Priors [UVL18]
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Related Work: Hand-crafted prior - Sparsity
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Original image Sparse image (DCT)

Key Assumption

Manifold of natural images ≈ Set of s−sparse images, S



Related Work: Sparse recovery
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The prior S = {x ∈ Rn | ‖x‖0 ≤ s}

Minimize l0−norm:

min
x
‖x‖0, s.t. Fx = y, (2)

Perfect recovery if m ≥ O(s log(n/s)) [FR13]

Can be solved using Lasso [Tib96], basis pursuit [CDS01],...

Shown success on variety of linear and non-linear inverse problems

Denoising [Don95], Super-resolution [Don+11]
Image inpainting [XS10], Phase retrieval [JH17]

What if m < O(s log(n/s)) ?



Related Work: Limitations of sparsity
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Original
n = 12288

m = 50 m = 100 m = 200 m = 500 m = 1000 m = 5000

Sparse reconstructions using Lasso (in DCT domain)

Poor performance for low values of m

Can we leverage similar images from existing datasets?

These are sparse in known basis, but do they resemble natural images?

Poor discrimination!



Related Work: End-to-end learning
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CNNs are known to learn rich image representations.

Learn a mapping from y to x∗

Several approaches for different inverse problems
[Kul+16; MPB15; MB17; Don+16; KKLML16]

y x*

Each new problem requires fresh training!



Related Work: End-to-end learning
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How to learn natural image manifold directly?

Generative Adversarial Networks (GANs)
[Goo+14; RMC16]

Generated 
Images



Related Work: GAN as a prior
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Real
Images 

from
Dataset

G(.)z

X
fake

X
real

(R
eal D

ata)

D(.)
real

fake

k

Training through 
Back-propagation

G(.)zk S: Set of natural images

Learning a 'natural' image prior through GAN training

Train a GAN on natural images

New Assumption

Manifold of natural images ≈ Range of well-trained Generator (G), S

The prior S = {x ∈ Rn | x = G(z), z ∈ Rk}



Related Work: CSGM algorithm [Bor+17]
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CSGM Algorithm [Bor+17]:

• Obtain a well-trained Generator G.

• Replace x = G(z) in Eq. 1, and solve:

ẑ = arg min
z∈Rk
‖y − FG(z)‖22, x̂ = G(ẑ) (3)

Recovery is possible if m ≥ O(kd log n) for appropriate G

How to solve? G is non-convex!

Use Gradient Descent with Backprop

• Search remains limited to S

• May get stuck in local minima

• Requires multiple random restarts

• No convergence guarantees



Contributions



Contributions: PGDGAN algorithm [SH18]

1Image from [Bol+17]
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We propose Projected Gradient Descent to explore the space outside S

Step 1: Unconstrained Exploration
GD update on ‖(y − Fx)‖22 :

wt ← xt + ηgdFT(y − Fxt)

Step 2: Projection

xt+1 = PG (wt) := G
(
argmin

z
‖wt − G(z)‖22

)
,

PG(wt)

wt

‖xt − wt‖

xt
G(z)

‖xt+1 − PG(wt)‖

1

How to project on range of G ?



Contributions: PGDGAN algorithm [SH18]
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How to project on range of G ?
Multiple options: simplest is to use GD via backprop.

Unconstrained exploration
Projection on the span of generator

Reconstruction

Initialization

• Empirical results on MNIST, celebA

• Improved performance

• Random restarts are not needed

• Provable linear convergence

• Extended to non-linear problems as well

• Extension to handle model mismatch



Contributions: Experimental results on MNIST
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Comparisons among PGDGAN [SH18], CSGM [Bor+17], and Lasso-DCT [Tib96]

Reconstruction results on MNIST [LeC+98]:

• Generator is fully-connected network with k = 20.

• Image dimension is n = 784

• Reconstruction with m = 100 measurements (in (b)).
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Contributions: Experimental results on celebA
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Reconstruction results on CelebA [Liu+15]:

• DCGAN with k = 100.

• Unseen test images.

• Reconstruction with m = 1000 measurements.



Contributions: Linear convergence of our algorithm
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Theorem (Guarantee: linear convergence)
Under certain conditions on F and m, the sequence (xt) defined by the PGDGAN algorithm with
converges to x∗ with high probability. ψ(·) is l2−norm.

ψ(xt+1) ≤
(

1
ηgdγ

− 1
)
ψ(xt)

Key ideas:

• The difference of any two images in S lies away from nullspace of F. (S− REC).

• Spectral norm of F is upper-bounded by √γ.

• PG(·) is a orthogonal projection operator.

• The learning rate obeys: 1
2γ < ηgd <

1
γ



Challenges and Recent
Developments



Challenge 1: Representation error
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What if target image is not in the range of G? =⇒ Representation Error
La
ss
o
(D
CT
)

PG
DG
AN

m = 100 m = 500 m = 2500 m = 5000 m = 7500 m = 10000 Original
n = 12288Sparse reconstructions using Lasso and PGDGAN

Performance of GAN prior saturates due to limited capacity of Generator

(a) Glow model [KD18], (b) Progressive-GAN model [Kar+17].

Use better GAN variants



Challenge 1: Representation error
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Use both GAN prior and Sparsity

x∗ = x∗b + x∗i ; x
∗
b comes from G, x∗i is sparse

min
z,xi
‖xi‖1 s.t. F(G(z) + xi) = y,

Solve using alternating minimization [DGE18; Sha19]

Also useful in case of model mismatch

6=

GAN Trained

on Dog Images

Inference on

Bird Image

Target image belongs to completely different image distribution!



Challenge 2: Projection may not be optimal
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How to obtain perfect projection on range of G ?

Learn the projection operator

(⋅)G
†

θ
G( ⋅ )G( ⋅ )

(. )PG

z ∼ N(0, I)

Noise

[RLB19]

Invert G layer by layer

• Exact recovery is possible under certain
conditions [Lei+19]



Challenge 3: Complex-valued representations
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Many inverse problems operate in Complex domain

MRI, Phase Unwrapping, Speech etc.

Requires Complex-valued GANs

Deep Learning in Complex domain is challenging

• Design complex-valued network components [Tra+18; Vas+20]
• activation function, softmax, batchnorm

• Incorporate Fourier Domain

• May lead to superior performance



Summary and Future Work



Summary and future work

Summary:

• Replacing hand-crafted priors with learned priors

• Novel PGD-based algorithms with theoretical guarantees

• Works for variety of linear and non-linear inverse problems

Future directions:

• Complex-valued neural networks

• More challenging inverse problems such as modulo imaging
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Appendix



Experimental results for Super-resolution

Original images are in top row. Middle row depicts downsampled images (4×), and
bottom row shows reconstruction.



Extension to phase retrieval problem

Phase retrieval problem:

x̂ = argmin
x
‖y − |Fx|‖2

s.t. x = G(z),
t

sgn(t) = 1sgn(t) = −1

g(t)

g(t) = abs(t)

Alternating Phase PGD:
1: for t = 1,…T do
2: pt−1 ← sgn(Fxt−1)

3: wt−1 ← xt−1 + ηFT(y � pt−1 − Fxt−1)

4: xt ← PG(wt−1) = G (argminz ‖wt−1 − G(z)‖)
5: end for
6: x̂ ← xT



Solving Non-linear Inverse Problems using PGDGAN

We provide empirical results for two non-linear inverse problems.

1. Sinusoidal model, with
F(x) = Fx + sin(Fx).

• We use l2−loss as ψ.

F(t) = t + sin(t)

t

2. Sigmoid model, with
(x) = sigmoid(Fx) = 1

1+exp(−Fx) .

• We use a loss function specified as:

ψ(t) =
1
m

m∑
i=1

(
Θ(f Ti t)− yif

T
i t
)
,

where, Θ(·) is integral of F(·), and
fi represents the rows of the
measurement matrix F.

F(t) = sigmoid(t)

sigmoid′(t)
t

The gradient of the loss:

∇ψ(t) =
1
m
FT(sigmoid(Ft)− y).



Experimental Results: Non-linear Inverse Problems

• We perform the experiments on CelebA Dataset:
• We use DCGAN with both G and D are CNNs with 4 hidden layers each.
• Dimensions of the input z is k = 100.
• Test images are kept unseen during training.
• Total number of updates is set to 1000, with T = 10 and Tin = 100.
• We reconstruct the images with m = 1000 measurements.
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(a) Sinusoidal model; (b) Sigmoid model.



Deep Image Prior

Deep Image Prior: randomized neural network used as a handcrafted prior [UVL18]

Solve following through neural network training:

θ∗ = argmin
θ
‖fθ(z)− x0‖22; x∗ = fθ(z).



Linear Convergence of PGDGAN Algorithm

The difference vector of any two images in the set S should lie away from the
nullspace of the matrix F.

S-REC (Set Restricted Eigenvalue Condition)
Let S ∈ Rn . F is m× n matrix. For parameters γ > 0, δ ≥ 0, matrix F is said to satisfy
the S-REC(S, γ, δ) if,

‖F(x1 − x2)‖2 ≥ γ‖x1 − x2‖2 − δ,

for ∀x1, x2 ∈ S .

Theorem (Guarantee: linear convergence)
Let G be a generator with range S . F is satisfying the S-REC(S, γ, δ) with probability 1− p, and
has ‖Fv‖ ≤ ρ‖v‖ for every v ∈ Rn with probability 1− q. ρ2 ≤ γ.
Then, for every x∗ ∈ S , the sequence (xt) defined by the PGDGAN algorithm converges to x∗ with
probability at least 1− p− q.



Extension to Non-linear Inverse Problems

We extend the above algorithm for non-linear inverse problems:

• We generalize the loss function to be ψ(·) and the projection oracle to PG .

• Assume that the ψ has a continuous gradient ∇ψ =
(
∂ψ
∂xi

)n
i=1
.

• We define the ε-approximate projection oracle PG as,

Approximate projection
A function PG : Rn → Range(G) is an ε-approximate projection oracle if for all x ∈ Rn ,
PG(x) obeys:

‖x − PG(x)‖22 ≤ min
z∈Rk
‖x − G(z)‖22 + ε.

ε−PGD Algorithm:

• Initialization: x0 ← 0

• Gradient update step: wt ← xt − η∇ψ(xt)

• Projection step: xt+1 ← PG(wt)



ε− PGD: Theoretical Results

The analysis for linear problem is a special case of the above theorem.

Theorem (Linear Convergence of ε−PGD)
Under certain conditions on ψ, ε-PGD algorithm convergences linearly up to a ball of
radius O(γ∆) ≈ O(ε).

ψ(xt+1)− ψ(x∗) ≤
(
β

α
− 1

)
(ψ(xt)− ψ(x∗)) + O(ε) .

Proved using:

• ψ follows Restricted Strong Convexity/Smoothness conditions with constants α, β.

• Gradient at the minimizer is small:‖∇ψ(x∗)‖2 ≤ γ

• Range of G is compact: diam(Range(G)) = ∆.

• γ∆ ≤ O(ε).

• 1 ≤ β
α
< 2



ε− PGD: Theoretical Results

We introduce more general restriction conditions on the ψ(·):

Restricted Strong Convexity/Smoothness
Assume that ψ satisfies ∀x, y ∈ S:

α

2
‖x − y‖22 ≤ ψ(y)− ψ(x)− 〈∇ψ(x), y − x〉 ≤

β

2
‖x − y‖22.

for positive constants α, β.

Theorem (Linear Convergence of ε−PGD)
If ψ satisfies RSC/RSS over Range(G) with constants α and β, then ε-PGD algorithm
convergences linearly up to a ball of radius O(γ∆) ≈ O(ε).

ψ(xt+1)− ψ(x∗) ≤
(
β

α
− 1

)
(ψ(xt)− ψ(x∗)) + O(ε) .

The analysis for linear problem is a special case of the above theorem.
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