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Introduction

= Phase retrieval is broadly defined as a problem that deals with the
recovery of a real- or complex-valued signal from its amplitude
observations. It naturally arises in optical imaging where sensors
measure Iintensity.

= General problem formulation: Suppose we are given noisy, amplitude
measurements as
y = |Ax™| + e,

— z* € R"is the unknown signal or image

— A e R™*" is the measurement operator matrix
— y € R™is the measurement vector

— e € R™is the measurement noise.

= Aim: To recover unknown signal * given y and A.

Phase Retrieval as an Inverse Problem

= [n general, phase retrieval is an under-determined problem with infinitely
many possible solutions.

= A standard approach for solving such a problem is to restrict the solution
space to a set M C R" that captures some known structure z* Is
expected to obey.

= The phase retrieval problem can then be formulated as the following
constrained optimization problem

min 0ss(y; |[Az|) st zeM,

where loss(-) denotes some appropriate loss function between the given
and estimated observations and M denotes the constraint set.

Experiments

= Datasets: MNIST digits and celebA images.

= Generator: DCGAN architecture as shown in Figure 1.

= Latent code dimension: k£ = 32 for MNIST and k = 256 for celebA.

= Optimizer: Stochastic gradient descent (SGD) as in [1].

= Measurement matrix A is created by selecting entries independently

from Gaussian distribution with zero mean and variance 1/m.
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Generative Prior for Phase Retrieval

= Traditional constraints for signals and images include known support for nonzero entries, positivity, and sparsity in some basis.
= Generative prior can learn the structure of “natural” images from large training data using an autoencoder or a generative adversarial network (GAN).

= Learn a generative model G/(z) that maps a latent vector z € R* to a natural image = € R™. See an example of a generator in Figure 1.
The learned generative model, G(z), is expected to approximate the high-dimensional probability distribution of the image set M. That s,

M = {z € R"|z = G(2) for some z € R}

= Solve an inverse problem with generative priors as

— Gradient descent (GD) [3,5]: min, ||y — |[AG(2)]]|3
— Alternating phase gradient descent (APGD): min. ||p ®y — AG(2)||5
— Alternating phase projected gradient descent (APPGD): min, ., ||[p®y — Az||5 st. x = G(2).

= Qur proposed APPGD improves upon |3,5] by combining the gradient descent and projected gradient descent methods for generative priors |2]
with AltMin-based non-convex optimization techniques used in sparse phase retrieval [4,6].
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= We initialize z as a random vector and

. | | | | | repeat the three steps until convergence.
Figure 1. lllustration of Alternating Phase Projected Gradient Descent (APPGD) algorithm.

Convergence Result

Theorem: Suppose we have an initialization xy € satisfying dist (zg, z*) < dy, for 0 < §y < 1, and suppose the number of (Gaussian) measurements, m > C(kdlogn), for some large
enough constant C. Then with high probability the iterates x;,, of Algorithm 1 satisfy

dist (ZB,H_l, 33*> S ,OdISt (th, ZE*) )

where x;, 401, 2F € M, and 0 < p < 1 is a constant.
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Figure 2. Reconstruction results on MNIST
for three approaches of compressive phase
retrieval with m = 60 measurements.
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Figure 4. Reconstruction results on celeb A o
for APPGD with m = 1000 measurements.
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Figure 3. Performance comparison for three approaches on MNIST Figure 5. Performance comparison for three approaches on celeb A
test set (10 images). test set (10 images).
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