Alternating Phase Projected Gradient Descent with Generative Prior for Solving Compressive Phase Retrieval

Rakib Hyder ¹ Viraj Shah ² Chinmay Hegde ² M. Salman Asif ¹

¹University of California Riverside ²Iowa State University

Introduction

- Phase retrieval is broadly defined as a problem that deals with the recovery of a real- or complex-valued signal from its amplitude observations. It naturally arises in optical imaging where sensors measure intensity.
- General problem formulation: Suppose we are given noisy, amplitude measurements as

$$y = |Ax^*| + e,$$

- $-x^* \in \mathbb{R}^n$ is the unknown signal or image
- $-A \in \mathbb{R}^{m \times n}$ is the measurement operator matrix
- $-y \in \mathbb{R}^m$ is the measurement vector
- $-e \in \mathbb{R}^m$ is the measurement noise.
- Aim: To recover unknown signal x^* given y and A.

Phase Retrieval as an Inverse Problem

- In general, phase retrieval is an under-determined problem with infinitely many possible solutions.
- A standard approach for solving such a problem is to restrict the solution space to a set $\mathcal{M} \subset \mathbb{R}^n$ that captures some known structure x^* is expected to obey.
- The phase retrieval problem can then be formulated as the following constrained optimization problem

$$\min_{x} |\operatorname{oss}(y; |Ax|) \quad \text{s.t.} \quad x \in \mathcal{M},$$

where loss(\cdot) denotes some appropriate loss function between the given and estimated observations and \mathcal{M} denotes the constraint set.

Experiments

Datasets: MNIST digits and celebA images.

arXiv:1808.05854, 2018.

- Generator: DCGAN architecture as shown in Figure 1.
- Latent code dimension: k = 32 for MNIST and k = 256 for celebA.
- Optimizer: Stochastic gradient descent (SGD) as in [1].
- Measurement matrix A is created by selecting entries independently from Gaussian distribution with zero mean and variance 1/m.

References

- [1] P. Bojanowski, A. Joulin, D. Lopez-Paz, and A. Szlam, "Optimizing the latent space of generative networks," ICML 2018.
- [2] A. Bora, A. Jalal, E. Price, and A. Dimakis, "Compressed sensing using generative models," ICML 2017.
- [3] P. Hand, O. Leong, and V. Voroninski, "Phase retrieval under a generative prior," NeurIPS 2018.
- [4] G. Jagatap and C. Hegde, "Fast, sample-efficient algorithms for structured phase retrieval," NeurIPS 2017. [5] F. Shamshad and A. Ahmed, "Robust compressive phase retrieval via deep generative priors,"
- [6] H. Zhang and Y. Liang, "Reshaped wirtinger flow for solving quadratic system of equations," NeurIPS 2016.

Generative Prior for Phase Retrieval

- Traditional constraints for signals and images include known support for nonzero entries, positivity, and sparsity in some basis.
- Generative prior can learn the structure of "natural" images from large training data using an autoencoder or a generative adversarial network (GAN).
- Learn a generative model G(z) that maps a latent vector $z \in \mathbb{R}^k$ to a natural image $x \in \mathbb{R}^n$. See an example of a generator in Figure 1. The learned generative model, G(z), is expected to approximate the high-dimensional probability distribution of the image set \mathcal{M} . That is,

$$\mathcal{M} = \{x \in \mathbb{R}^n | x = G(z) \text{ for some } z \in \mathbb{R}^k \}.$$

- Solve an inverse problem with generative priors as
- Gradient descent (GD) [3,5]: $\min_{z} ||y |AG(z)||_{2}^{2}$
- Alternating phase gradient descent (APGD): $\min_z \|p \odot y AG(z)\|_2^2$
- Alternating phase projected gradient descent (APPGD): $\min_{x,z} \|p \odot y Ax\|_2^2$ s.t. x = G(z).
- Our proposed APPGD improves upon [3,5] by combining the gradient descent and projected gradient descent methods for generative priors [2] with AltMin-based non-convex optimization techniques used in sparse phase retrieval [4,6].

Figure 1. Illustration of Alternating Phase Projected Gradient Descent (APPGD) algorithm.

Alternating Phase Projected Gradient Descent

- Our algorithm performs three main tasks at every iteration:
- Phase update
- Gradient descent update
- Projection onto the generator
- We initialize z as a random vector and repeat the three steps until convergence.

Convergence Result

Theorem: Suppose we have an initialization $x_0 \in$ satisfying dist $(x_0, x^*) \le \delta_0$, for $0 < \delta_0 < 1$, and suppose the number of (Gaussian) measurements, $m > C(kd \log n)$, for some large enough constant C. Then with high probability the iterates x_{t+1} of Algorithm 1 satisfy

 $\operatorname{dist}(x_{t+1}, x^*) \le \rho \operatorname{dist}(x_t, x^*),$

where $x_t, x_{t+1}, x^* \in \mathcal{M}$, and $0 < \rho < 1$ is a constant.

Results: MNIST

Figure 2. Reconstruction results on MNIST for three approaches of compressive phase retrieval with m=60 measurements.

Figure 3. Performance comparison for three approaches on MNIST test set (10 images).

Further Information

Full paper available at https://arxiv.org/abs/1903.02707 For additional question please email sasif@ece.ucr.edu

Results: celebA

Figure 5. Performance comparison for three approaches on celeb A test set (10 images).

Acknowledgments: RH and MA were supported by the DARPA REVEAL Program and an equipment donation from NVIDIA Corporation. VS and CH were supported in part by grants from NSF CCF-1815101, a Faculty Fellowship from the Black and Veatch Foundation, and an equipment donation from NVIDIA Corporation.