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Introduction

Phase retrieval is broadly defined as a problem that deals with the

recovery of a real- or complex-valued signal from its amplitude

observaঞons. It naturally arises in opঞcal imaging where sensors

measure intensity.

General problem formulaঞon: Suppose we are given noisy, amplitude

measurements as

y = |Ax∗| + e,

x∗ ∈ Rn is the unknown signal or image

A ∈ Rm×n is the measurement operator matrix

y ∈ Rm is the measurement vector

e ∈ Rm is the measurement noise.

Aim: To recover unknown signal x∗ given y and A.

Phase Retrieval as an Inverse Problem

In general, phase retrieval is an under-determined problem with infinitely

many possible soluঞons.

A standard approach for solving such a problem is to restrict the soluঞon

space to a set M ⊂ Rn that captures some known structure x∗ is

expected to obey.

The phase retrieval problem can then be formulated as the following

constrained opঞmizaঞon problem

min
x

loss(y; |Ax|) s.t. x ∈ M,

where loss(·) denotes some appropriate loss funcঞon between the given

and esঞmated observaঞons and M denotes the constraint set.

Generative Prior for Phase Retrieval

Tradiঞonal constraints for signals and images include known support for nonzero entries, posiঞvity, and sparsity in some basis.

Generaঞve prior can learn the structure of “natural” images from large training data using an autoencoder or a generaঞve adversarial network (GAN).

Learn a generaঞve model G(z) that maps a latent vector z ∈ Rk to a natural image x ∈ Rn. See an example of a generator in Figure 1.

The learned generaঞve model, G(z), is expected to approximate the high-dimensional probability distribuঞon of the image set M. That is,

M = {x ∈ Rn|x = G(z) for some z ∈ Rk}.

Solve an inverse problem with generaঞve priors as
Gradient descent (GD) [3,5]: minz ‖y − |AG(z)|‖2

2
Alternaঞng phase gradient descent (APGD): minz ‖p � y − AG(z)‖2

2
Alternaঞng phase projected gradient descent (APPGD): minx,z ‖p � y − Ax‖2

2 s.t. x = G(z).

Our proposed APPGD improves upon [3,5] by combining the gradient descent and projected gradient descent methods for generaঞve priors [2]

with AltMin-based non-convex opঞmizaঞon techniques used in sparse phase retrieval [4,6].

Figure 1. Illustraࢼon of Alternaࢼng Phase Projected Gradient Descent (APPGD) algorithm.

Alternating Phase Projected Gradient Descent

Our algorithm performs three main tasks

at every iteraঞon:

Phase update

Gradient descent update

Projecঞon onto the generator

We iniঞalize z as a random vector and

repeat the three steps unঞl convergence.

Convergence Result

Theorem: Suppose we have an iniঞalizaঞon x0 ∈ saঞsfying dist (x0, x∗) ≤ δ0, for 0 < δ0 < 1, and suppose the number of (Gaussian) measurements, m > C(kd log n), for some large

enough constant C . Then with high probability the iterates xt+1 of Algorithm 1 saঞsfy

dist (xt+1, x∗) ≤ ρ dist (xt, x∗) ,

where xt, xt+1, x∗ ∈ M, and 0 < ρ < 1 is a constant.

Experiments

Datasets: MNIST digits and celebA images.

Generator: DCGAN architecture as shown in Figure 1.

Latent code dimension: k = 32 for MNIST and k = 256 for celebA.
Opঞmizer: Stochasঞc gradient descent (SGD) as in [1].

Measurement matrix A is created by selecঞng entries independently

from Gaussian distribuঞon with zero mean and variance 1/m.
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Results: MNIST

Figure 2. Reconstrucࢼon results on MNIST

for three approaches of compressive phase

retrieval with m = 60 measurements.
Figure 3. Performance comparison for three approaches on MNIST

test set (10 images).

Further Information

Full paper available at h�ps://arxiv.org/abs/1903.02707

For addiঞonal quesঞon please email sasif@ece.ucr.edu

Results: celebA

Figure 4. Reconstrucࢼon results on celeb A

for APPGD with m = 1000 measurements.

Figure 5. Performance comparison for three approaches on celeb A

test set (10 images).
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