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Abstract—We consider the problem of reconstructing a signal
from under-determined modulo observations (or measurements).
This observation model is inspired by a (relatively) less well-
known imaging mechanism called modulo imaging, which can
be used to extend the dynamic range of imaging systems;
variations of this model have also been studied under the
category of phase unwrapping. Signal reconstruction in the under-
determined regime with modulo observations is a challenging
ill-posed problem, and existing reconstruction methods cannot
be used directly. In this paper, we propose a novel approach
to solving the inverse problem limited to two modulo periods,
inspired by recent advances in algorithms for phase retrieval
under sparsity constraints. We show that given a sufficient
number of measurements, our algorithm perfectly recovers the
underlying signal and provides improved performance over other
existing algorithms. We also provide experiments validating our
approach on both synthetic and real data to depict its superior
performance.

I. INTRODUCTION
A. Motivation

The problem of reconstructing a signal (or image) from
(possibly) nonlinear observations is widely encountered in
standard signal acquisition and imaging systems. Our focus in
this paper is the problem of signal reconstruction from modulo
measurements, where the modulo operation with respect to
a positive real valued parameter R returns the (fractional)
remainder after division by R. See Fig. [T for an illustration.

Formally, we consider a high dimensional signal (or image)
x* € R™. We are given modulo measurements of x*, that is,
for each measurement vector a; € R", we observe:

mod ({(a; -x*),R) i={1,2,...,m}, (1)

The task is to recover x* using the modulo measurements ¥
and knowledge the measurement matrix A = [a; ag ... ay)
This specific form of signal recovery is gaining rapid interest
in recent times. Recently, the use of a novel imaging sensor
that wraps the data in a periodical manner has been shown
to overcome certain hardware limitations of typical imaging
systems [1]-[4]. Many image acquisition systems suffer from
the problem of limited dynamic range; however, real-world
signals can contain a large range of intensity levels, and if
tuned incorrectly, most intensity levels can lie in the saturation
region of the sensors, causing loss of information through signal
clipping. The problem gets amplified in the case of multiplexed
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Fig. 1: The modulo transfer function.

linear imaging systems (such as compressive cameras or coded
aperture systems), where required dynamic range is very high
because of the fact that each linear measurement is a weighted
aggregation of the original image intensity values.

The standard solution to this issue is to improve sensor
dynamic range via enhanced hardware; this, of course, can be
expensive. An intriguing alternative is to deploy special digital
modulo sensors [5]—[8]. As the name suggests, such a sensor
wraps each signal measurement around a scalar parameter R
that reflects the dynamic range. However, this also makes the
forward model (I)) highly nonlinear and the reconstruction
problem highly ill-posed. The approach of [1]], [2] resolves
this problem by assuming overcomplete observations, meaning
that the number of measurements m is higher than the ambient
dimension n of the signal itself. For the cases where m and n
are large, this requirement puts a heavy burden on computation
and storage.

In contrast, our focus is on solving the the inverse problem (T)
with very few number of samples, i.e., we are interested in
the case m < n. While this makes the problem even more ill-
posed, we show that such a barrier can be avoided if we assume
that the underlying signal obeys a certain low-dimensional
structure. In this paper, we focus on the sparsity assumption on
the underlying signal, but our techniques could be extended to
other signal structures. Further, for simplicity, we assume that
our forward model is limited to only two modulo periods, as
shown in the Fig.[2{a). Such a simplified variation of the modulo
function already inherits much of the challenging aspects of
the original recovery problem. Intuitively, this simplification
requires that the value of dynamic range parameter R should
be large enough so that all the measurements (a; - x*) can be
covered within the domain of operation of the modulo function,
Le, (a;-x*) € [-R,R] Vi € {1,2,..,m}.

B. Our contributions

In this paper, we propose a recovery algorithm for exact
reconstruction of signals from modulo measurements of the
form (I). We refer our algorithm as MoRAM, short for Modulo
Recovery using Alternating Minimization. The key idea in our



approach is to identify and draw parallels between modulo
recovery and the problem of phase retrieval. Indeed, this
connection enables us to bring in algorithmic ideas from
classical phase retrieval, which also helps in our analysis.

Phase retrieval has its roots in several classical imaging
problems, but has attracted renewed interest of late. There, we
are given observations of the form:

yi = [(a;,x")], i=1,2,...,m,

and are tasked with reconstructing x*. While these two different
class of problems appear different at face value, the common
theme is the need of undoing the effect of a piecewise linear
transfer function applied to the observations. See Fig. 2| for
a comparison. Both the functions are identical to the identity
function in the positive half, but differ significantly in the
negative half. Solving the phase retrieval problem is essentially
equivalent to retrieving the phase (sign (y;)) corresponding to
each measurement y;. However, the phase can take only two
values: 1 if t > 0, or —1 if ¢ < 0. Along the same lines, for
modulo recovery case, the challenge is to identify the bin-index
for each measurement. Estimating the bin-index correctly lets
us “unravel” the modulo transfer function, thereby enabling
signal recovery.
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Fig. 2: Comparison between (a) modulo function (f(t) =
mod (t, R)); and (b) absolute value function (g(t) = abs(t)).

At the same time, several essential differences between the
two problems restrict us from using phase retrieval algorithms
as-is for the modulo reconstruction problem. The absolute
value function can be represented as a multiplicative transfer
function (with the multiplying factors being the signs of
the linear measurements), while the modulo function adds a
constant value (R) to negative inputs. Therefore, the estimation
procedures propagate very differently in the two cases. In the
case of phase retrieval, a wrongly estimated phase induces
an error that increases linearly with the magnitude of each
measurement. On the other hand, for modulo recovery problem,
the error induced by an incorrect bin-index is R (or larger),
irrespective of the measurement. Therefore, existing algorithms
for phase retrieval perform rather poorly for our problem (both
in theory and practice).

We resolve this issue by making non-trivial modifications
to existing phase retrieval algorithms that better exploit the
structure of modulo reconstruction. We also provide analytical
proofs for recovering the underlying signal using our algorithm,
and show that such a recovery can be performed using an
(essentially) optimal number of observations, provided certain
standard assumptions are met. To the best of our knowledge we

are the first to pursue this type of approach for modulo recovery
problems with generic linear measurements, distinguishing us
from previous work [[1]], [2].

C. Techniques

The basic approach in our proposed (MoRAM) algorithm is
similar to several recent non-convex phase retrieval approaches.
We pursue two stages.

In the first stage, we identify a good initial estimated signal
x0 that that lies (relatively) close to the true signal x*. A
commonly used initialization technique for phase retrieval is
spectral initialization as described in [9]. However, that does
not seem to succeed in our case, due to markedly different
behavior of the modulo transfer function. Instead, we introduce
a novel approach of measurement correction by comparing our
observed measurements with typical density plots of Gaussian
observations. Given access to such corrected measurements,
x0 can be calculated simply by using a first-order estimator.
This method is intuitive, yet provides a provable guarantee for
getting an initial vector that is close to the true signal.

In the second stage, we refine this coarse initial estimate
to recover the true underlying signal. Again, we follow an
alternating-minimization (AltMin) approach inspired from
phase retrieval algorithms (such as [9]) that estimates the signal
and the measurement bin-indices alternatively. However, as
mentioned above, any estimation errors incurred in the first
step induces fairly large additive errors (proportional to the
dynamic range parameter R.) We resolve this issue by using
a robust form of alternating-minimization (specifically, the
Justice Pursuit algorithm [[10]]). We prove that AltMin, based
on Justice Pursuit, succeeds provided the number of wrongly
estimated bin-indices in the beginning is a small fraction of the
total number of measurements. This gives us a natural radius
for initialization, and also leads to provable sample-complexity
upper bounds.

D. Paper organization

The reminder of this paper is organized as follows. In
Section we briefly discuss the prior work. Section [[1I
contains notation and mathematical model used for our analysis.
In Section [IV] we introduce the MoRAM algorithm and provide
a theoretical analysis of its performance. We demonstrate the
performance of our algorithm by providing series of numerical
experiments in Section Section provides concluding
remarks.

II. PRIOR WORK

We now provide a brief overview of related prior work.
At a high level, our algorithmic development follows two
(hitherto disconnected) streams of work in the signal processing
literature.

Phase retrieval: As stated earlier, in this paper we borrow
algorithmic ideas from previously proposed solutions for phase
retrieval to solve the modulo recovery problem. Being a
classical problem with a variety of applications, phase retrieval
has been studied significantly in past few years. Approaches to



solve this problem can be broadly classified into two categories:
convex and non-convex.

Convex approaches usually consist of solving a constrained
optimization problem after lifting the true signal x* in higher
dimensional space. The seminal PhaseLift formulation [11]] and
its variations [12], [[13] come under this category. Recently, [14],
[15] proposed a convex optimization based algorithm for
solving the phase retrieval problem that doesn’t lift the
underlying signal and hence does not square the number of
variables. The precise analysis of it has been derived in [[16],
[17]. Typical non-convex approaches involve finding a good
initialization, followed by iterative minimization of a loss
function. Approaches based on Wirtinger Flow [18]-[21]] and
Amplitude flow [22], [23] come under this category.

In recent works, extending phase retrieval algorithms to
situations where the underlying signal exhibits a sparse
representation in some known basis has attracted interest.
Convex approaches for sparse phase retrieval include [24]—[27].
Similarly, non-convex approaches for sparse phase retrieval
include [9]], [21], [22]. Our approach in this paper towards
solving the modulo recovery problem can be viewed as a
complement to the non-convex sparse phase retrieval framework
advocated in [28]).

Modulo recovery: The modulo recovery problem is also
known in the classical signal processing literature as phase
unwrapping. The algorithm proposed in [29] is specialized
to images, and employs graph cuts for phase unwrapping
from a single modulo measurement per pixel. However, the
inherent assumption there is that the input image has very few
sharp discontinuities, and this makes it unsuitable for practical
situations with textured images. Our work is motivated by the
recent work of [2] on high dynamic range (HDR) imaging
using a modulo camera sensor. For image reconstruction using
multiple measurements, they propose the multi-shot UHDR
recovery algorithm, with follow-ups developed further in [30].
However, the multi-shot approach depends on carefully de-
signed camera exposures, while our approach succeeds for non-
designed (generic) linear observations; moreover, they do not
include sparsity in their model reconstructions. In our previous
work [3]], we proposed a different extension based on [2,
[31] for signal recovery from quantized modulo measurements,
which can also be adapted for sparse measurements, but there
too the measurements need to be carefully designed.

In the literature, several authors have attempted to theoreti-
cally understand the modulo recovery problem. Given modulo-
transformed time-domain samples of a band-limited function,
[1] provides a stable algorithm for perfect recovery of the
signal and also proves sufficiency conditions that guarantees
the perfect recovery. [4] formulates and solves an QCQP
problem with non-convex constraints for denoising the modulo-
1 samples of the unknown function along with providing a
least-square based modulo recovery algorithm.. However, both
these methods relay on the smoothness of the band-limited
function as a prior structure on the signal, and as such it is
unclear how to extend their use to more complex modeling
priors (such as sparsity in a given basis).

In recent works, [32] proposed unlimited sampling algorithm
for sparse signals. Similar to [1]], it also exploits the bandlimit-

edness by considering the low-pass filtered version of the sparse
signal, and thus differs from our random measurements setup.
In [33]], modulo recovery from Gaussian random measurements
is considered, however, it assumes the true signal to be
distributed as mixed Bernoulli-Gaussian distribution, which is
impractical in real world imaging scenarios.

For a qualitative comparison of our MoRAM method with
existing approaches, refer Table [l The table suggests that
the previous approaches varied from the Nyquist-Shannon
sampling setup only along the amplitude dimension, as they
rely on band-limitedness of the signal and uniform sampling
grid. We vary the sampling setup along both the amplitude and
time dimensions by incorporating sparsity in our model, which
enables us to work with non-uniform sampling grid (random
measurements) and achieve a provable sub-Nyquist sample
complexity.

III. PRELIMINARIES
A. Notation

Let us introduce some notation. We denote matrices using
bold capital-case letters (A, B), column vectors using bold-
small case letters (x, ¥, z etc.) and scalars using non-bold letters
(R,m etc.). We use letters C' and ¢ to represent constants
that are large enough and small enough respectively. We use
x ', AT to denote the transpose of the vector x and matrix A
respectively. The cardinality of set S is denoted by card(.S).
We define the signum function as sgn(z) := ﬁ for every
r € R,z # 0, with the convention that sgn(0) = 1. The 4*"
element of the vector x € R” is denoted by ;. Similarly, i*"
row of the matrix A € R™*™ is denoted by a;, while the
element of A in the i** row and j** column is denoted as
a;;. The projection of x € R™ onto a set of coordinates S
is represented as xg € R", ie., xg, = x; for j € S, and 0
elsewhere.

B. Mathematical model

As depicted in Fig. [2{a), we consider the modulo operation
within 2 periods (one in the positive half and one in the negative
half). We assume that the value of dynamic range parameter
R is large enough so that all the measurements (a; - X*) are
covered within the domain of operation of modulo function.
Rewriting in terms of the signum function, the (variation of)
modulo function under consideration can be defined as:

AP )

One can easily notice that the modulo operation in this case
is nothing but an addition of scalar R if the input is negative,
while the non-negative inputs remain unaffected by it. If we
divide the number line in these two bins, then the coefficient
of R in above equation can be seen as a bin-index, a binary
variable which takes value 0 when sgn(t) = 1, or 1 when
sgn(t) = —1. Inserting the definition of f in the measurement
model of Eq. [T] gives,

=t (DY




TABLE I:

Comparison of MoRAM with existing modulo recovery methods.

Unlimited Sampling 1]

OLS Method [4]

multishot UHDR [2] MoRAM (our approach)

Assumption on structure of signal Bandlimited

Bandlimited No assumptions Sparsity

Sampling scheme uniform grid

uniform grid (carefully chosen) random linear measurements

linear measurements

Sample complexity oversampled, O(n)

- oversampled, O(n) undersampled, O(slog(n))

Provides sample complexity bounds? Yes - No Yes
Leverages Sparsity? No No No Yes
(Theoretical) bound on dynamic range Unbounded Unbounded Unbounded 2R

We can rewrite Eq. [2| using a bin-index vector p € {0,1}™.
Each element of the true bin-index vector p* is given as,

FEREL [(03)

, i={1,..,m}.

If we ignore the presence of modulo operation in above
formulation, then it reduces to a standard compressive sensing
reconstruction problem. In that case, the compressed measure-
ments y., would just be equal to (a; - x*).

While we have access only to the compressed modulo
measurements y, it is useful to write y in terms of true
compressed measurements y.. Thus,

yi = (@i - xX") +pi R =ye, + p; .

It is evident that if we can recover p* successfully, we can
calculate the true compressed measurements (a; - x*) and use
them to reconstruct x* with any sparse recovery algorithm
such as CoSaMP [34] or basis-pursuit [35]—[37].

IV. SPARSE SIGNAL RECOVERY

Of course, the major challenge is that we do not know the
bin-index vector. In this section, we describe our algorithm
to recover both x* and p*, given y, A,s, R. Our algorithm
MoRAM (Modulo Reconstruction with Alternating Minimiza-
tion) comprises of two stages: (i) an initialization stage, and
(ii) descent stage via alternating minimization.

A. Initialization by re-calculating the measurements

Similar to other non-convex approaches, MoRAM also
requires an initial estimate x© that is close to the true signal x*.
We have several initialization techniques available; in phase
retrieval, techniques such as spectral initialization are often used.
However, the nature of the problem in our case is fundamentally
different due to the non-linear additive behavior of the modulo
transfer function. To overcome this issue, we propose a method
to re-calculate the true Gaussian measurements (y. = Ax*)
from the available modulo measurements.

The high level idea is to undo the nonlinear effect of modulo
operation in a significant fraction of the total available mea-
surements. To understand the method for such re-calculation,
we will first try to understand the effect of modulo operation
on the linear measurements.

Ye
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Fig. 3: Density plot of Ax*

1) Effect of the modulo transfer function: To provide some
intuition, let us first examine the distribution of the Ax*(Fig.
and mod (Ax*) (shown in Fig. to understand what
information can be obtained from the modulo measurements.
We are particularly interested in the case where the elements
of Ax* are small compared to the modulo range parameter R.

Note that the compressed measurements y. follow the
standard normal distribution, as A is Gaussian random matrix.
These plots essentially depict the distribution of our observa-
tions before and after the modulo operation.

With reference to Fig. 3] we divide the compressed ob-
servations y. in two sets: y 4 contains all the non-negative
observations (orange) with bin-index= 0, while y. _ contains
all the negative ones (green) with bin-index= 1.

As shown in Fig. 4] after modulo operation, the set y.
(green) shifts to the right by R and gets concentrated in the right
half ([R/2, R]); while the set y. 4 (orange) remains unaffected
and concentrated in the left half ([0, R/2]). Thus, for some
of the modulo measurements, their correct bin-index can be
identified just by observing their magnitudes relative to the
midpoint R/2. This leads us to obtain following maximum
likelihood estimator for bin-indices (p):

0, if0<y <R/2
1, ifR2<y <R

init __

D; 3)

The pi™t obtained with above method contains the correct
values of bin-indices for many of the measurements, except
for the ones concentrated within the ambiguous region in the
center.

Once we identify the initial values of bin-index for the mod-
ulo measurements, we can calculate corrected measurements
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Fig. 4: Density plot of mod (Ax*). Best viewed in color.

Algorithm 1 MORAM-INITIALIZATION

Inputs: y, A, s, R
Output: x°
fori=0:m do
Calculate pi™" according to Eq.

end for
Calculate yinit according to Eq.
X M, (LY e,

as,

y::nlt =y + pinitR' (4)

We use these corrected measurements yiPit to calculate the
initial estimate x° with first order unbiased estimator.

X ( Z yznzt ) 5)

where H, denotes the hard thresholding operator that keeps
the s largest absolute entries of a vector and sets the other
entries to zero.

B. Alternating Minimization

Using Eq. 5] we calculate the initial estimate of the signal
x© which is relatively close to the true vector x*. Starting with
x9, we calculate the estimates of p and x in an alternating
fashion to converge to the original signal x*. At each iteration
of alternating-minimization, we use the current estimate of
the signal x* to get the value of the bin-index vector p® as
following:

pr = Losmnl(A )

Given that x° is close to x*, we expect that p® would
also be close to p*. Ideally, we would calculate the correct
compressed measurements y& using pt, and use y¢ with any
popular compressive recovery algorithms such as CoSaMP or
basis pursuit to calculate the next estimate xt*+1. Thus,

(6)

ye = (Ax**!) =y — p°R,

t+1 — arg min |Ax — y2||§,

xE

X

Algorithm 2 MORAM-DESCENT

Inputs: y, A, s, R

Output: xT

m,n < size(A)

Initialization

x9 <+ MoRAM-initialization(y, A)
Alternating Minimization

for t =0:T do

pt “ lfsgn(2<A x%))

ye -y —p'R )

Xt+1 — Jp(ﬁ [A I} 5 ﬁyg’ [Xt pt}T).
end for

where M denotes the set of s-sparse vectors in R™. Note
that sparsity is only one of several signal models that can be
used here, and in principle a rather similar formulation would
extend to cases where M denotes any other structured sparsity
model [38]].

However, it should be noted that the “bin” error d* =
p® — p*, even if small, would significantly impact the cor-
rection step that constructs yg, as each incorrect bin-index
would add a noise of the magnitude R in yt. Our experiments
suggest that the typical sparse recovery algorithms are not
robust enough to cope up with such large errors in yt. To
tackle this issue, we employ an outlier-robust sparse recovery
method [[10]. We consider the fact that the nature of the error
d® is sparse with sparsity sq; = ||d%|o; and each erroneous
element of p adds a noise of the magnitude R in y?.

Rewriting in terms of Justice Pursuit, the recovery problem
now becomes problem becomes,

1= argmin (A 1 [§] - yel3

[x d]TEMoys,,

However, the sparsity of d® is unknown, suggesting that
greedy sparse recovery methods cannot be directly used
without an additional hyper-parameter. Thus, we employ basis
pursuit [39] which does not rely on sparsity. The robust
formulation of basis pursuit is referred as Justice Pursuit (JP)
[10], specified in Eq.

1 1
= x'! JP(\/> A 1], myg, x* pf"). D
Proceeding this way, we repeat the steps of bin-index calcula-
tion (as in Eq. [6) and sparse recovery (Eq. [7) altenatingly for
T iterations. Our algorithm is able to achieve convergence to
the true underlying signal, as supported by the results in the
experiments section.

V. MATHEMATICAL ANALYSIS

Before presenting experimental validation of our proposed
MoRAM algorithm, we now perform a theoretical analysis of
the descent stage of our algorithm. We assume the availability
of an initial estimate x° that is close to x*, i.e. [|[x? — x*||]2 <
d]|x*||2- In our case, our initialization step (in Alg. [2) provide
such x°.

We perform alternating-minimization as described in [2}
starting with x© calculated using Alg. l 1] For simplicity, we limit



our analysis of the convergence to only one AltMin iteration.
In fact, according to our theoretical analysis, if initialized
closely enough, one iteration of AltMin suffices for exact signal
recovery with sufficiently many measurements. However, in
practice we have observed that our algorithm requires more
than one AltMin iterations.

The first step is to obtain the initial guess of the bin-index
vector (say p°) using x°.
o _ 1—sgn((A-x%)

= 5 )
If we try to undo the effect of modulo operation by adding
back R for the affected measurements based on the bin-index

vector pY, it would introduce an additive error equal to R
corresponding to each of the incorrect bin-indices in p°.

p

ye = (Ax%) =y - p°R,

We show the guaranteed recovery of the true signal as the
corruption in the first set of corrected measurements y9 can
be modeled as sparse vector with sparsity less than or equal
to Am, with ¢ being a fraction that can be explicitly bounded.

To prove this, we first introduce the concept of binary e-
stable embedding as proposed by [40]]. Let B™ be a Boolean
cube defined as B™ := {—1,1}™ and let S"~ ! := {x € R":
||x||]2 = 1} be the unit hyper-sphere of dimension n.

Definition 1 (Binary e-Stable Embedding). A mapping F :
R™ — B™ is a binary e-stable embedding (BeSE) of order s
for sparse vectors if:

dS(X’Y) —€e< dH(F(X)vF(y» < dS(X7Y) +¢€

for all x,y € S"~1 with |supp(z) U supp(y)| < s.
In our case, let us define the mapping F : R" — B™ as:

F(x) := sgn(Ax);
with A ~ N™>"(0,1). We obtain:

Lemma 2. Let A be the matrix generated as A ~ N™*™(0,1)
and suppose x*,x° € R™ are s—sparse vectors satisfying
Ix* — x°||2 < 6||x*||2. Let n € [0,1], € > 0. If the number of
measurements

m> 3 (s log (n) + 2slog (22) + log (%)), then, the follow-
ing is true with probability exceeding 1 — n:

dpg (sgn(Ax™), sgn(AxO)) < g +¢;

where dy; is Hamming distance between binary vectors defined
as:

1 n
dH(a,b) = E Zai (&) bi,
i=1
for n— dimensional binary vectors a, b.

Proof. Given m > % (s log (n) + 2slog (23) + log (%)),
using Theorem 3 from [40] we conclude that F'(-) is a BeSE
for s-sparse vectors. Thus for sparse vectors x*, x9:

dy (F(x%), F(x°)) < ds(x*,x%) +e. (8)

Here, dgs(-) is defined as the natural angle formed by two
vectors. Specifically, for p, q in unit norm ball,

1 1
ds(p7q) = ;arccos<p,q> = ;9,

where 6 is the angle between two unit norm vectors p and q.
We note that,

b
Ilp—dll2 = 2sm(§)~

Thus,
2d,(p,q) < [|p — qll2 < 7ds(p, q) ©)
Combining eq. [8] and eq. [9] we conclude,
dp(sgn(Ax*),sgn(Ax)) < %Hx* —x% +e ie.,
dpr(sgn(Ax*), sgn(Ax®)) < g +e. (10)
We use this to obtain:
Theorem 3. Given an initialization x° satisfying

|x* — x%||2 < 0||x*||2, for 0 < 3§ < 1,7 €[0,1], € >0, if we
have number of (Gaussian) measurements satisfying
2 <s log (n) + 2slog (22) + log (%)) and
s < ~ym/(log(n/m)+1), then the estimate after the
first iteration x* of Algorithm E] is exactly equal to the true
signal x* with probability at least 1 — K exp(—cm) — ), with
K and c being numerical constants.

m >

Proof. In the estimation step, Algorithm [2| dubs the problem of
recovering the true signal x* from the modulo measurements
as the special case of signal recovery from sparsely corrupted
compressive measurements. As we discussed in Section
the presence of modulo operation modifies the compressive
measurements by adding a constant noise of the value R in
fraction of total measurements. However, once we identify
correct bin-index for some of the measurements using x°,
the remaining noise can be modeled as sparse corruptions d
according to the formulation:

y =Ax +L,R(p® — p*) = Ax +d.

Here, the [0-norm of d gives us the number of noisy measure-
ments in y2.

If the initial bin-index vector p° is close to the true bin-
index vector p*, then ||d||p is small enough with respect to
total number of measurements m; thus, d can be treated as
sparse corruption. If we model this corruption as a sparse
noise, then we can employ JP for a guaranteed recovery of
the true signal given (i) sparsity of the noise is a fraction of
total number of measurements; (ii) sufficiently large number
of measurements are available.

We compute ||d||o as,

Idflo = l(p* = P)Rllo;
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Fig. 5: Mean relative reconstruction error vs no. of measurements (m) for MORAM with ||x*||2 = 1,7 = 1000, and (a) R = 4;

(b) R =4.25; (c) R=4.5.

4000

m

(a) Original image

m = 6000

(a) Original image

(b) R =4, SNR =26.10dB (c) R = 4.25, SNR = 26.96dB (d) R = 4.5, SNR = 27.28dB

(b) R =4, SNR = 79.65dB (c) R = 4.25, SNR = 81.81dB (d) R = 4.5, SNR = 83.51dB

Fig. 6: (a) Original Lovett Hall image (n = 16, 384); sparse reconstructions (s = 800) using m = 4000 (top) and m = 6000
(bottom) measurements for (b) R =4, (¢) R =4.25, (d) R =4.5.

expanding further,
1-sen((A-x%) 1 sgn((A-x))

Jao = 222 4
_ sgn(Ax*) —sgn(Ax°)
- 2
F(x*) - F(x?)
=
=dy(F(x"), F(x%)).
From eq. [10]
< é +€=ym.

2

Algorithm2]is essentially the Justice Pursuit (JP) formulation
as described in [I0]. Exact signal recovery from sparsely
corrupted measurements is a well-studied domain with uniform
recovery guarantees available in the existing literature. We use
the guarantee proved in [41] for Gaussian random measurement

matrix, which states that one can recover a sparse signal exactly
by tractable ¢;-minimization even if a positive fraction of the
measurements are arbitrarily corrupted. With ||d||o < ym, we
invoke Theorem 1.1 from [41] to complete the proof. [

VI. NUMERICAL EXPERIMENTS

In this section, we present the results of simulations of signal
reconstruction using our algorithm. All numerical experiments
were conducted using MATLAB R2017a on a Linux system
with an Intel CPU and 64GB RAM. Our experiments explores
the performance of the MoRAM algorithm on both synthetic
data as well as real images.

We perform experiments on a synthetic sparse signal x* €
R™ with n = 1000. The sparsity level of the signal is chosen
in steps of 3 starting from 3 with a maximum value of 12. The
non-zero elements of the test signal x* are generated using
zero-mean Gaussian distribution (0, 1) and normalized such



that ||x*|| = 1. The elements of the Gaussian measurement
matrix A € R™*" q;; are also generated using the standard
normal distribution AV (0, 1). The number of measurements m
is varied from m = 100 to m = 1000 in steps of 100.

Using A, x* and R, We first obtain the compressed modulo
measurements y by passing the signal through forward model
described by Eq.[2l We compute the initial estimate x° using the
algorithm [I] For reconstruction, algorithm [2]is employed. we
plot the variation of the relative reconstruction error (%)
with number of measurements m for our AltMin based sparse
recovery algorithm MoRAM.

For each combination of R, m and s, we run 10 independent
Monte Carlo trials, and calculate mean of the relative recon-
struction error over these trials. Fig. E] (a), (b) and (c) illustrate
the performance of our algorithm for increasing values of R
respectively. It is evident that for each combination of R and
s, our algorithm converges with probability 1 to give the exact
recovery of the true signal (zero relative error) provided enough
number of measurements. In all such cases, the minimum
number of measurements required for exact recovery are well
below the ambient dimension (n) of the underlying signal.

A. Experiments on real image

We also evaluated the performance of our algorithm on a
real image. We obtain sparse representation of the real image
by transforming the original image in the wavelet basis (dbl).
The image used in our experiment is 128 x 128 (n = 16384)
image of Lovett Hall (fig. [f[(a)), and we use the thresholded
wavelet transform (with Haar wavelet) to sparsify this image
with s = 800. We reconstruct the image with MoRAM using
m = 4000 and m = 6000 compressed modulo measurements,
for 3 different values of R, 4,4.25 and 4.5. As expected, the
reconstruction performance increases with increasing value of
R. As shown in Fig. @bottom), for m = 6000, The algorithm
produces near-perfect recovery for all 3 values of R with high
PSNR.

VII. DISCUSSION

In this paper, for signal recovery from compressed modulo
measurements, we presented a novel algorithmic approach
inspired from the classical phase retrieval solutions. Our
mathematical and experimental analysis support our claim
of exact signal recovery through proposed algorithm. Several
open questions remain that can serve as the future directions of
our work. While in this paper we considered only two periods
within the modulo operation, extending the proposed approach
for more periods (and theoretically infinite periods) is a
significant and interesting research direction. Instead of relying
on sparsity prior for compressed recovery, employing novel set
of priors such as GAN priors [42], [43] can also be a direction
to be explored. Analysis and guaratees for initialization in our
algorithm can also be an interesting direction. Moreover, our
analysis is limited to the case of Gaussian measurements, thus
extending our results to various measurement schemes such
as Fourier samples can be an interesting problem for future
study.
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