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Need for High Dynamic Range (HDR)
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e The Dynamic Range of the real signals can be very large.

e Dynamic range of the sensor is limited due to hardware constraint.
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Solution: modulo sensor
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Challenge: modulo recovery

Modulo Recovery
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e How to recover the true signal from modulo observations?
e Inverting many-to-one function

e Challenging, ill-posed, non-linear inverse problem
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| Under certain conditions, recovery is possible. |

Modulo Recovery




Prior approaches

Unlimited sampling [1], OLS Method [2], Single-Shot UHDR [8]...

Sampling at sub-Nyquist rate is not possible because:

e Vary only along amplitude dimension
e Follow Nyquist sampling along time dimension

o All rely on bandlimited-ness
To achieve sub-Nyquist sample complexity,

e Bandlimited-ness — sparsity
e Vary along both time and amplitude dimension

e Adapt random linear measurements



Our contribution: modulo recovery for compressive sensing

Table 1: Comparison of our approach with existing modulo recovery methods

Sampling scheme

Unlimited
. OLS Method [2] Multishot UHDR [8] Our approach
Sampling [1]
Assumption on . - . "
R bandlimited bandlimited no assumptions sparsity
structure of signal
X . X . (carefully chosen) random linear
uniform grid uniform grid .

linear measurements measurements

undersampled,

Sample complexity

oversampled, O(n)

oversampled, O(n)

O(slog(n))

Provides sample

complexity bounds?

Yes

No

Yes




Our contribution: modulo recovery for compressive sensing

e Signal reconstruction from compressed modulo observations

e Recover x* € R" using the observations y € R” and the Gaussian random

matrix A = [a; a2 ... am]T e R™*".

yi= mod ((a-x),R) = mod (e, R),

— f(t) = mod (t,R)

| Limit to 2 periods of modulo operation

| R is large enough, so all the elements of Ax™ are covered within the domain of operation [—R, R].

| still inherits the challenging aspects: non-linearity, many-to-one




Mathematical model

— f(t)= mod (¢t,R)

R

Re-write modulo operation in terms of sgn function,

yi = (ai - x*) + (W) R, i={1,.,m}.

pr = 1-— sgn(2<ai - x*))

, | Bin-index, can be 0 or 1. |

The compressed measurements (y.) is equal to (A - x*).

Ye=Yi—pP'R.



MoRAM: basic idea

Inspired by: Jagatap et al., '17 [3]
MoRAM: Modulo Recovery with Alternating Minimization

1. (Carefully) Initialize x°.

e Calculate the corrected observations and bin-indices p™*, yi"'t.

init

e Calculate the initial estimate using p

2. Alternating Minimization For t =1,2,..., T:

e Bin-index estimation.

e Signal estimation.
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MoRAM: Initialization

To recover p* partially:

a
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Figure 1: Density plots of (a) yo = Ax*; (b) y = mod (Ax™).

o JO, ifO<y <R/
1, fR/2<y <R

11



MoRAM: Descent through AltMin

Use alternating minimization with Justice Pursuit [4]

t
e Bin-index estimation: pt = %M

e Signal estimation using Justice Pursuit:

Ye=y—PR

(il

x* = argmin ||u||; s.t. [A I} u=y:

u=[x d] T

% A 1] ,%yzv[xt o).

= x" = JP(
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Challenge in signal estimation

— (1)
- xll =
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gross corruption in
t
Yc

| Error is constant, additive |
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Justice Pursuit

E i *

t

Ye [All]
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e Error d' = p' — p* is sparse.

e Augmented problem becomes,

EEEEE NN NN NNNNNENNEN

X
X = argmin | [A 1] [T - I3,
[x d]TEMﬁ»sdr d

[X;d]l+1

e | sparsity sy is unknown = use basis-pursuit formulation |
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Guarantee: descent

Theorem (Guarantee for descent)

Given p < R and the initial estimate of bin-index p° obtained using Eq. 1, if
the number of modulo measurements m satisfies:

. MR—M) n+m
m> G | [[x"|[o +2m lo ,
(Il + 2m =) ) g o

(R—p)

then the first iteration of Algorithm 2 returns the true signal x° with probability
exceeding 1 — 3e_C2"’, where C; and G, are constants that depend only on the

RIP constants for the augmented measurement matrix [A 1].

Sample complexity: O(slog n)
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Experiments on synthetic si
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Figure 2: Mean relative reconstruction error vs no. of measurements (m) for
MoRAM with ||x*||> = 1, n = 1000, and (a) R = 3.2; (b) R = 3.6.
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Experiments with real images

Conventional sensor ~ Modulo camera with R =4, R = 4.25, R = 4.50

(c)26.63dB (d) 27.20dB (e) 27.21dB

SNR= (a) Original image (b) 8.25dB (c) 81.50dB (d) = 82.88dB (e) 83.25dB

Figure 3: Sparse reconstructions (s = 800) of original Lovett Hall image (n = 16, 384); with
m = 4000 and m = 6000 measurements (b) using basis pursuit for observations from a
conventional sensor with dynamic range [0, 4]; (c,d,e) using MoRAM for modulo observations
obtained with modulo sensor with dynamic range [0, R] with R = 4,4.25,4.5.
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Summary and future work

Summary:

e Novel problem of modulo recovery with compressive sensing
e Provable algorithm, leverages sparsity

e O(slogn) sample complexity
Future directions:

e Extend to noisy observations
e Extend beyond 2 periods

e Explore generative priors
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Summary of other research

® V. Shah and M.Soltani and C. Hegde,
Reconstruction from Periodic Nonlinearities, with Applications to HDR
Imaging,
Asilomar Conference on Signals, Systems, and Computers, November 2017.

e V. Shah and C. Hegde,
Solving Linear Inverse Problems using GAN Priors: an Algorithm with
Provable Guarantees,
International Conference on Acoustics, Speech, and Signal Processing, 2018.

e In collaboration with R. Singh and B. Pokuri and C. Hegde and S. Sarkar and B.
Ganapathysubramanian
Physics-aware Deep Generative Models for Creating Synthetic
Microstructures,
to be submitted to: Machine Learning for Molecules and Materials Workshop at
Neural Information Processing Systems, 2018.

e R. Hyder and V. Shah and C. Hegde and S. Asif,
Alternating Phase Projected Gradient Descent with Generative Priors for
Solving Compressive Phase Retrieval,
submitted to: International Conference on Acoustics, Speech, and Signal
Processing, 2019.
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Summary and future work

Summary:

e Novel problem of modulo recovery with compressive sensing
e Provable algorithm, leverages sparsity

e O(slogn) sample complexity
Future directions:

e Extend to noisy observations
e Extend beyond 2 periods

e Explore generative priors
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Ideas from the sparse phase retrieval

e Phase retrieval: we are given observations of the form:
yi:‘<aiaX*>|7 I':1727"'7m7

and are tasked with reconstructing x*.
— (1) —g(t)

R t t
sgn(t) = -1 ‘ sgn(t) =1 sgn(t) = —1 ‘ sgn(t) =1
f(t)= mod (t,R) g(t) = abs(t)
(a) (b)

Figure 4: Comparison between (a) modulo function (f(t) = mod (t, R)); and
(b) absolute value function (g(t) = abs(t)).

| Striking similarities |




Initialization

A hyper-parameter p approximates the /oo—norm of Ax*.

1. Calculate corrected observations y..

e Calculate p™" as:

0, f0O<yi<(R—p) (setYy)
i =40, if(R—p)<yi<p (region of uncertainty)
1, fp<yi<R (set Y-)
o Calculate yM':
y =y +p"R.
e set U= Y, UY_, N=card(U).

2. Calculate initial estimate x°

N
1 ini
x0 = H, (N .E_l yC,LS.,iaUJ) ) ()

where H denotes the hard thresholding operator.



Initialization

Algorithm 1 MORAM-INITIALIZATION

Inputs: y, A, s, R, p
Output: x°
U+
for i=0:mdo

if (R—p)>y; ory; > pthen

U+~ Uu{i}

end if

Calculate p,’-'""t according to Eq. 1.
end for
N <« |U|, calculate yi"'* according to Eq. ??

0 1~V it
X H, (& T,y jau,)




Signal estimation with Justice pursuit

Algorithm 2 MORAM-DESCENT

Inputs: y, A, s, R
Output: x"
m, n < size(A)
Initialization
x? +— MoRAM-initialization(y, A)
Alternating Minimization
fort=0:T do

pt < l—sgn(2<A~><t>)

Ye =y - PR

Xt JP(% [A 1] ,ﬁyé, xt pf").
end for




Yi Yi

pi=1 pi=-1

g(t) = abs(t)

| Error is constant, additive | | Error is linear w.r.t. y; |




The challenge in signal estimation step

| 5] B ] = el e el i 8 8 e )

Yy P Ye Ye A

signal estimation with
sparse recovery algorithm such as CoSaMP

xﬂ
5
&

ve=(A) =y —p'R,
Xt+1 = arg min HAX - y::H%’
Xe

= x"! = CoSaMP(—=

\F \ﬁymsX)

if le,| <€ = |exr1| < Ce. | Here, e = R.




Justice Pursuit

y& rod [All]

e Error d' is sparse.

e augmented problem becomes,

EEEEE NN NN NNNNNENNEN

Xt = argmin || [A I] |:::| —y§||§, [X;d]Hl

[x d]-r €M5+sdt

e | sparsity sy is unknown = use basis-pursuit formulation |




Proof sketch

Proof sketch: Initialization

e Establish lower bound on N

__ 9 9(R=p)
° sz(l 2 (R-,;))'

e Bound [|x* —X°|| where, x* = H; (x°).

e Establish the result with the union bound over all the s—sparse vectors.

Proof sketch: Descent

e Theoretically, only 1 signal estimation with of JP is needed (T = 1).
e Show that the mapping F(x) := sgn(Ax) is Binary e-Stable Embedding.
e Establish x° and x* are §— close = [|d°||lo = ||(p* — P°)R]jo < ym.

e Use the fact that x* = x* if ||d°|jo < ym with y being positive fraction.



Proof sketch: initialization

Each row of our truncated Gaussian measurement matrix (A g) is independent, and also follows the Gaussian distribution with zero
mean. We denote this distribution with Gaussian random vector Z in RS, and arrange N rows as the independent samples from the
distribution; Z; AUXS.i' The covariance matrix of Z can be calculated as ¥ = EZ ® Z,

T =EZ®Z=EZZ' = diag(Es},E23, ..., Ez2) = In.

Now, calculate the sample covariance matrix of Z using the samples Z; = Ay g ;.
1 & 1
.
TN == 20Z®Z = —AyxsAuxs:
N = W

Given N > C (f) s, we invoke the Corollary 5.50 of [7] which relates ¥ 5 and X as following with probability at least
2

)i

1 — 2exp (*t s

=y — 2 < &

IN
x

1T
= HNAUXSAUXS = sl



Mathematical analysis

Here, let us fix the s—sparse vector x™ in unit norm ball. We can evaluate the operator norm in above equation over set of s—sparse

vectors in unit norm ball.

.
I (FAGxsAUxs = In)xll2
= ap (N UxS X )
xES [IxIl2

1
N
I (EAUXSAUXSX* =) ll2 < w2l

0
—x"ll2 < wlIx"l2

lI%

with probability at least 1 — 2 exp (—t25> given the fixed s —sparse vector x™. Take union bound over all (g) such s—sparse vectors

Binary e-Stable Embedding
A mapping F : R” — B is a binary e-stable embedding (BeSE) of order s for

sparse vectors if:
ds(x,y) — € < dn(F(x), F(y)) < ds(x,y) +¢€;

for all x,y € S"~* with |supp(x) U supp(y)| < s.



Reconstruction from Periodic Non-linearities [6], Spring 2017

V. Shah and M.Soltani and C. Hegde,
Reconstruction from Periodic Nonlinearities, with Applications to HDR Imaging,
Asilomar Conference on Signals, Systems, and Computers, November 2017.

— Qof (t)
— f(t)




Reconstruction from Periodic Non-linearities [6]

nental Results

Our Algorithm: RQM-Recovery from Quantized Modulo images

[Recovery from Quantized Modulo images|

Dequantization

0.5

> ~-RQM
s % = 0.4 —-RQM-multi-shot
g g 8
H G — 03
2 3 g
8 2 2

s o2
B @
: o \“‘_‘

without sparsity

10 20 30

Number of quantized measurements (k)

Algorithm:RQM
Recover u from i yLD’ B, C kK, Qs with sparsity
. Output:
¥ = Q(Cu) using HM Stage 1: Harmonic dequantization 05
algorithm. 7 < HMDEQUANTIZATION(y, C, k) § ~—ROM-sparse
» Modulo recovery: Stage 2:» Modulo recovery[2] 04 - RQM-multi-shot-sparse
Recover z from ? Flexz(m n e
— - for | =1: q do o
u = f(Dx) using teD(l:q: (K—1)g+1.1) g0‘3
MF-Sparse [2] or e (l:q:(K—1)g+1) 202
Multi-shot UHDR [1]. 7 = argmaxcq |(y. 1) g
» Sparse recovery: endlfor . 0.1
Recover x from z = Bx Az .zl
- Stage 3: Sparse recovery o
using any stable sparse % & CoSAMP(Z, B. s) 0 10 20 30

recovery algorithm (e.g.
CoSaMP).

Number of quantized measurements (k)




g Linear Inverse Problems using GAN Priors [5], Fall 2017

V. Shah and C. Hegde,

Solving Linear Inverse Problems using GAN Priors: an Algorithm with Provable
Guarantees,

International Conference on Acoustics, Speech, and Signal Processing, 2018.

Initialization Illustration of our approach on MNIST dataset

Reconstruction

HA

AN

——> Gradient descent update ﬂ

—> Projection on the span of generator




Solving Linear Inverse Problems using GAN Priors [5

» We train the generator G : R¥ — R™

Learning a 'natural' image prior through GAN training
rrrrr > Training through

Back-propagation \

0 =

m _olae o
(507,80 ,°%000
k {5 o ©°s:setof natural images
Neell O 0 oo o
N0 0 o0

» With pre-trained generator(G), apply Projected Gradient Descent in 2 steps:

1. Gradient Descent Update Step 2. Projection Step

Gradient Descent
Update
on
ly - Ax|[3

Optimization using
Gradient Descent

Xt We G(2)




near Inverse Problems using GAN Priors [5]

Experimental Results

on MNIST dataset

]
e o MHER
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Physics-aware Deep Generative Models, Fall 2018

In collaboration with R. Singh and B. Pokuri and C. Hegde and S. Sarkar and B.

Ganapathysubramanian

Physics-aware Deep Generative Models for Creating Synthetic Microstructures,

to be submitted to: Machine Learning for Molecules and Materials Workshop at Neural

Information Processing Systems, 2018.

Dataset

Eoies
,,,,, » Training through

Back-propagation

2. Training step|

2. Training step)

1

==
F=T
Calbrated

Invariances

Figure 5: (a) Generative Adversarial Network model;

Network model; (c) Hybrid (GAN+GIN) model.

(b) Generative Invariant



Physics-aware Deep Generative Models
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Figure 3: (a) Sample images from Cahn-Hilliard dataset; (b) samples generated by WGAN-GP
trained on CH-dataset; (c) Samples generated by WGAN-GP trained over the morphologies from
CH,, dataset (only includes the images with volume fraction between 0.35 to 0.45); (d) Samples

generated by WGAN-GP trained over the morphologies from CH,,» dataset (only includes the images
with 2—point correlation equal to 0.0625).



Physics-aware Deep Generative Models
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Figure 8: Images generated by GIN models; with first image in each row being the real image used
for calibration. (a,b) are trained over enite ps curve while model in (c) used only the initial portion of

ps curve.
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(a) GIN trained on entire p> curve  (b) GIN trained on entire ps curve  (c) GIN trained on initial portion of p curve



Physics-aware Deep Generative Models

— p1 of Real image
Generated data distribution

— Original Image
Generated Images
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Figure 10: Comparisons of volume fraction (p;) distribution and 2— point correlation curves between
the images generated by hybrid GAN and the target image.



Phase retrieval using generative priors, Fall 2018

R. Hyder and V. Shah and C. Hegde and S. Asif,

Alternating Phase Projected Gradient Descent with Generative
Priors for Solving Compressive Phase Retrieval,

submitted to: International Conference on Acoustics, Speech, and Signal

Processing, 2019.

Projection

Alternating minimization .
onto generative network

YER™AER™ " 2 €R \n=hxwxc  Tanh
. o Rely_ 11)
zeR 128 RelU
Phase update Gradient descent 255 el M )
s
Ty w— Py LAz, w—wy —ap+ AT (y O pe— Axy) _.H-» ) — Ty

4 (
Projectandreshape cony ©
conv2 chvs‘”’
R

!

T

!!I




	Appendix

