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• The Dynamic Range of the real signals can be very large.

• Dynamic range of the sensor is limited due to hardware constraint.



Need for High Dynamic Range (HDR)
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Imaging systems

Clipping of the Signal

Solution? → Increase the Dynamic Range of the sensor

Expensive



Solution: modulo sensor
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Challenge: modulo recovery
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Modulo Recovery−−−−−−−−−−→

• How to recover the true signal from modulo observations?

• Inverting many-to-one function

• Challenging, ill-posed, non-linear inverse problem



Challenge: modulo recovery

Under certain conditions, recovery is possible.
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Prior approaches

Unlimited sampling [1], OLS Method [2], Single-Shot UHDR [8]...

Sampling at sub-Nyquist rate is not possible because:

• Vary only along amplitude dimension

• Follow Nyquist sampling along time dimension

• All rely on bandlimited-ness

To achieve sub-Nyquist sample complexity,

• Bandlimited-ness → sparsity

• Vary along both time and amplitude dimension

• Adapt random linear measurements
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Our contribution: modulo recovery for compressive sensing

Table 1: Comparison of our approach with existing modulo recovery methods.

Unlimited

Sampling [1]
OLS Method [2] Multishot UHDR [8] Our approach

Assumption on

structure of signal
bandlimited bandlimited no assumptions sparsity

Sampling scheme uniform grid uniform grid
(carefully chosen)

linear measurements

random linear

measurements

Sample complexity oversampled, O(n) – oversampled, O(n)
undersampled,

O(s log(n))
Provides sample

complexity bounds?
Yes – No Yes
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Our contribution: modulo recovery for compressive sensing

• Signal reconstruction from compressed modulo observations

• Recover x∗ ∈ Rn using the observations y ∈ Rm and the Gaussian random

matrix A = [a1 a2 ... am]
> ∈ Rm×n.

yi = mod (〈ai · x∗〉,R) = mod (yc,i ,R),

t
R

f (t) = mod (t,R)
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Limit to 2 periods of modulo operation

R is large enough, so all the elements of Ax∗ are covered within the domain of operation [−R,R].

still inherits the challenging aspects: non-linearity, many-to-one



Mathematical model

t
R

f (t) = mod (t,R)

Re-write modulo operation in terms of sgn function,

yi = 〈ai · x∗〉+
(
1− sgn(〈ai · x∗〉)

2

)
R, i = {1, ..,m}.

p∗i =
1− sgn(〈ai · x∗〉)

2
, Bin-index, can be 0 or 1.

The compressed measurements (yc) is equal to 〈A · x∗〉.

yc = yi − p∗R.
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MoRAM: basic idea

Inspired by: Jagatap et al., ’17 [3]

MoRAM: Modulo Recovery with Alternating Minimization

1. (Carefully) Initialize x0.

• Calculate the corrected observations and bin-indices pinit, yinit
c .

• Calculate the initial estimate using pinit

2. Alternating Minimization For t = 1, 2, ...,T :

• Bin-index estimation.

• Signal estimation.
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MoRAM: Initialization

To recover p∗ partially:

yc

−ρ−R ρ R

mod (·)

y

ρ RR − ρ

p0
i = 0 p0

i = 1

R/2

Figure 1: Density plots of (a) yc = Ax∗; (b) y = mod (Ax∗).

•

p0
i =

0, if 0 ≤ yi < R/2

1, if R/2 ≤ yi ≤ R
(1)
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MoRAM: Descent through AltMin

Use alternating minimization with Justice Pursuit [4]

• Bin-index estimation: pt = 1−sgn(〈A·xt〉)
2

• Signal estimation using Justice Pursuit:

yt
c = y − ptR

xt+1 = argmin
u=[x d]>

‖u‖1 s.t.
[
A I

]
u = yt

c

=⇒ xt+1 = JP(
1√
m

[
A I

]
,

1√
m
yt

c, [x
t pt]>).
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Challenge in signal estimation

t
R

pi = 1pi = 0

f (t)

f (t) = mod (t,R)

ŷi yi

emr

- =

yt pt yc
t

*
R

gross corruption in
yct

emr = R

Error is constant, additive
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Justice Pursuit
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• Error dt = pt − p∗ is sparse.

• Augmented problem becomes,

xt+1 = argmin
[x d]>∈Ms+s

dt

‖
[
A I

] [x
d

]
− yt

c‖2
2,

• sparsity sdt is unknown =⇒ use basis-pursuit formulation



Guarantee: descent

Theorem (Guarantee for descent)

Given ρ < R and the initial estimate of bin-index p0 obtained using Eq. 1, if

the number of modulo measurements m satisfies:

m ≥ C1

(
‖x∗‖0 + 2m

φ(R − ρ)
(R − ρ)

)
log

(
n +m

‖x∗‖0 + 2m φ(R−ρ)
(R−ρ)

)
,

then the first iteration of Algorithm 2 returns the true signal x0 with probability

exceeding 1− 3e−C2m, where C1 and C2 are constants that depend only on the

RIP constants for the augmented measurement matrix [A I].
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Sample complexity: O(s log n)



Experiments on synthetic signals
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Figure 2: Mean relative reconstruction error vs no. of measurements (m) for

MoRAM with ‖x∗‖2 = 1, n = 1000, and (a) R = 3.2; (b) R = 3.6.
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Experiments with real images

Conventional sensor Modulo camera with R = 4,R = 4.25,R = 4.50

m
=

4
0

0
0

SNR= (a) Original image (b) 8.20dB (c)26.63dB (d) 27.20dB (e) 27.21dB

m
=

6
0

0
0

SNR= (a) Original image (b) 8.25dB (c) 81.50dB (d) = 82.88dB (e) 83.25dB

Figure 3: Sparse reconstructions (s = 800) of original Lovett Hall image (n = 16, 384); with

m = 4000 and m = 6000 measurements (b) using basis pursuit for observations from a

conventional sensor with dynamic range [0, 4]; (c,d,e) using MoRAM for modulo observations

obtained with modulo sensor with dynamic range [0,R] with R = 4, 4.25, 4.5.
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Summary and future work

Summary:

• Novel problem of modulo recovery with compressive sensing

• Provable algorithm, leverages sparsity

• O(s log n) sample complexity

Future directions:

• Extend to noisy observations

• Extend beyond 2 periods

• Explore generative priors
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Summary of other research

• V. Shah and M.Soltani and C. Hegde,

Reconstruction from Periodic Nonlinearities, with Applications to HDR

Imaging,

Asilomar Conference on Signals, Systems, and Computers, November 2017.

• V. Shah and C. Hegde,

Solving Linear Inverse Problems using GAN Priors: an Algorithm with

Provable Guarantees,

International Conference on Acoustics, Speech, and Signal Processing, 2018.

• In collaboration with R. Singh and B. Pokuri and C. Hegde and S. Sarkar and B.

Ganapathysubramanian

Physics-aware Deep Generative Models for Creating Synthetic

Microstructures,

to be submitted to: Machine Learning for Molecules and Materials Workshop at

Neural Information Processing Systems, 2018.

• R. Hyder and V. Shah and C. Hegde and S. Asif,

Alternating Phase Projected Gradient Descent with Generative Priors for

Solving Compressive Phase Retrieval,

submitted to: International Conference on Acoustics, Speech, and Signal

Processing, 2019.
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Summary and future work

Summary:

• Novel problem of modulo recovery with compressive sensing

• Provable algorithm, leverages sparsity

• O(s log n) sample complexity

Future directions:

• Extend to noisy observations

• Extend beyond 2 periods

• Explore generative priors

20



References i

A. Bhandari, F. Krahmer, and R. Raskar.

On unlimited sampling.

Proc. Sampling Theory and Applications (SampTA), pages 31–35,

2017.

M. Cucuringu and H. Tyagi.

On denoising modulo 1 samples of a function.

In Proc. Int. Conf. Art. Intell. Stat. (AISTATS), 2018.

G. Jagatap and C. Hegde.

Fast, sample-efficient algorithms for structured phase retrieval.

In Proc. Adv. in Neural Inf. Proc. Sys. (NIPS), 2017.



References ii

J. Laska, M. Davenport, and R. Baraniuk.

Exact signal recovery from sparsely corrupted measurements

through the pursuit of justice.

In Proc. Asilomar Conf. Signals, Systems, and Computers, pages

1556–1560, 2009.

V. Shah and C. Hegde.

Solving linear inverse problems using gan priors: An algorithm

with provable guarantees.

Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing

(ICASSP), 2018.



References iii

V. Shah, M. Soltani, and C. Hegde.

Reconstruction from periodic nonlinearities, with applications

to hdr imaging.

In Proc. Asilomar Conf. Signals, Systems, and Computers, pages

863–867. IEEE, 2017.

R. Vershynin.

Introduction to the non-ptotic analysis of random matrices.

arXiv preprint arXiv:1011.3027, 2010.

H. Zhao, B. Shi, C. Fernandez-Cull, S. Yeung, and R. Raskar.

Unbounded high dynamic range photography using a modulo

camera.

In Intl. Conf. on Comp. Photography (ICCP), 2015.



Ideas from the sparse phase retrieval

• Phase retrieval: we are given observations of the form:

yi = |〈ai, x
∗〉|, i = 1, 2, . . . ,m,

and are tasked with reconstructing x∗.

t
R

sgn(t) = 1sgn(t) = −1

f (t)

f (t) = mod (t,R)

t
sgn(t) = 1sgn(t) = −1

g(t)

g(t) = abs(t)

(a) (b)

Figure 4: Comparison between (a) modulo function (f (t) = mod (t,R)); and

(b) absolute value function (g(t) = abs(t)).

Striking similarities



Initialization

A hyper-parameter ρ approximates the l∞−norm of Ax∗.

1. Calculate corrected observations yc.

• Calculate pinit as:

pinit
i =


0, if 0 ≤ yi < (R − ρ) (set Y+)

0, if (R − ρ) ≤ yi < ρ (region of uncertainty)

1, if ρ ≤ yi < R (set Y−)

• Calculate yinit
c :

yinit
c = y + pinitR.

• set U = Y+ ∪ Y−, N = card(U).

2. Calculate initial estimate x0

x0 = Hs

(
1

N

N∑
i=1

y init
c,U,iaU,i

)
, (2)

where Hs denotes the hard thresholding operator.



Initialization

Algorithm 1 MoRAM-initialization

Inputs: y, A, s, R, ρ

Output: x0

U ← ∅
for i = 0 : m do

if (R − ρ) > yi or yi ≥ ρ then

U ← U ∪ {i}
end if

Calculate piniti according to Eq. 1.

end for

N ← |U|, calculate yinit
c according to Eq. ??

x0 ← Hs

(
1
N

∑N
i=1 y

init
c,U,iaU,i

)



Signal estimation with Justice pursuit

Algorithm 2 MoRAM-descent

Inputs: y, A, s, R

Output: xT

m, n← size(A)

Initialization

x0 ← MoRAM-initialization(y,A)

Alternating Minimization

for t = 0 : T do

pt ← 1−sgn(〈A·xt〉)
2

yt
c ← y − ptR

xt+1 ← JP( 1√
m

[
A I

]
, 1√

m
yt

c, [x
t pt]>).

end for



Differences between phase retrieval and modulo recovery

t
R

pi = 1pi = 0

f (t)

f (t) = mod (t,R)

ŷi yi

emr

t
pi = −1pi = 1

g(t)

g(t) = abs(t)

ŷi yi

epr

emr = R epr = 2|yi |

Error is constant, additive Error is linear w.r.t. yi



The challenge in signal estimation step

+ =

yt pt yc
t

*
R

yc
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A

=

xt+1signal estimation with 
sparse recovery algorithm such as CoSaMP

yt
c = 〈Axt〉 = y − ptR,

xt+1 = argmin
x∈Ms

‖Ax− yt
c‖2

2,

=⇒ xt+1 = CoSaMP(
1√
m
A,

1√
m
yt

c, s, x
t).

if |eyi | ≤ ε =⇒ |ex t+1 | ≤ Cε. Here, ε = R.



Justice Pursuit
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• Error dt is sparse.

• augmented problem becomes,

xt+1 = argmin
[x d]>∈Ms+s

dt

‖
[
A I

] [x
d

]
− yt

c‖2
2,

• sparsity sdt is unknown =⇒ use basis-pursuit formulation



Proof sketch

Proof sketch: Initialization

• Establish lower bound on N

• N ≥ m
(
1− 2φ(R−ρ)

(R−ρ)

)
.

• Bound ‖x∗ − x̂0‖ where, x0 = Hs

(
x̂0
)
.

• Establish the result with the union bound over all the s−sparse vectors.

Proof sketch: Descent

• Theoretically, only 1 signal estimation with of JP is needed (T = 1).

• Show that the mapping F (x) := sgn(Ax) is Binary ε-Stable Embedding.

• Establish x0 and x∗ are δ− close =⇒ ‖d0‖0 = ‖(p∗ − p0)R‖0 ≤ γm.

• Use the fact that x1 = x∗ if ‖d0‖0 ≤ γm with γ being positive fraction.



Proof sketch: initialization

x̃0 = M =
1

N
A>T AT x∗.

Each row of our truncated Gaussian measurement matrix (AU×S ) is independent, and also follows the Gaussian distribution with zero

mean. We denote this distribution with Gaussian random vector Z in Rs , and arrange N rows as the independent samples from the

distribution; Zi := AU×S,i . The covariance matrix of Z can be calculated as Σ = EZ ⊗ Z ,

Σ = EZ ⊗ Z = EZZ> = diag(Ez2
1 , Ez

2
2 , ..., Ez

2
n ) = In.

Now, calculate the sample covariance matrix of Z using the samples Zi = A×S,i ,

ΣN =
1

N

N∑
i=1

Zi ⊗ Zi =
1

N
A>U×S AU×S .

Given N ≥ C
(

t
κ

)2
s, we invoke the Corollary 5.50 of [7] which relates ΣN and Σ as following with probability at least

1 − 2 exp
(
−t2s

)
:

‖ΣN − Σ‖ ≤ κ

=⇒ ‖
1

N
A>U×S AU×S − Is‖ ≤ κ



Mathematical analysis

Here, let us fix the s−sparse vector x∗ in unit norm ball. We can evaluate the operator norm in above equation over set of s−sparse

vectors in unit norm ball.

=⇒ sup
x∈S

‖
(

1
N

A>U×S AU×S − In

)
x‖2

‖x‖2

≤ κ

‖
( 1

N
A>U×S AU×S x∗ − x∗

)
‖2 ≤ κ‖x∗2‖

‖x̃0 − x∗‖2 ≤ κ‖x∗‖2

with probability at least 1 − 2 exp
(
−t2s

)
given the fixed s−sparse vector x∗ . Take union bound over all

(
n
s

)
such s−sparse vectors.

Binary ε-Stable Embedding

A mapping F : Rn → Bm is a binary ε-stable embedding (BεSE) of order s for

sparse vectors if:

dS(x, y)− ε ≤ dH(F (x),F (y)) ≤ dS(x, y) + ε;

for all x, y ∈ Sn−1 with |supp(x) ∪ supp(y)| ≤ s.



Reconstruction from Periodic Non-linearities [6], Spring 2017

V. Shah and M.Soltani and C. Hegde,

Reconstruction from Periodic Nonlinearities, with Applications to HDR Imaging,

Asilomar Conference on Signals, Systems, and Computers, November 2017.
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Reconstruction from Periodic Non-linearities [6]



Solving Linear Inverse Problems using GAN Priors [5], Fall 2017

V. Shah and C. Hegde,

Solving Linear Inverse Problems using GAN Priors: an Algorithm with Provable

Guarantees,

International Conference on Acoustics, Speech, and Signal Processing, 2018.



Solving Linear Inverse Problems using GAN Priors [5]



Solving Linear Inverse Problems using GAN Priors [5]



Physics-aware Deep Generative Models, Fall 2018

In collaboration with R. Singh and B. Pokuri and C. Hegde and S. Sarkar and B.

Ganapathysubramanian

Physics-aware Deep Generative Models for Creating Synthetic Microstructures,

to be submitted to: Machine Learning for Molecules and Materials Workshop at Neural

Information Processing Systems, 2018.
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Figure 5: (a) Generative Adversarial Network model; (b) Generative Invariant

Network model; (c) Hybrid (GAN+GIN) model.



Physics-aware Deep Generative Models



Physics-aware Deep Generative Models



Physics-aware Deep Generative Models



Phase retrieval using generative priors, Fall 2018

R. Hyder and V. Shah and C. Hegde and S. Asif,

Alternating Phase Projected Gradient Descent with Generative

Priors for Solving Compressive Phase Retrieval,

submitted to: International Conference on Acoustics, Speech, and Signal

Processing, 2019.
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