
RECONSTRUCTION FROM PERIODIC NONLINEARITIES,
WITH APPLICATIONS TO HDR IMAGING

Viraj Shah, Mohammadreza Soltani, and Chinmay Hegde

Department of Electrical and Computer Engineering

Problem Setup

I Aim: Reliable estimation of a signal from periodic nonlinearities.
I Nonlinearity in each observation is well-modeled by a periodic

function such as a sinusoidal function, or sawtooth function, or
square-wave function.

I We focus on a periodic nonlinear observation model encountered in
high-dynamic range (HDR) imaging.

HDR Imaging and Modulo camera [1]

Intensity camera Modulo camera Recovered image [1]
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I B ∈ Rq×n - Sparse basis matrix satisfying RIP condition.
I D ∈ Rp×n - Block diagonal matrix with k ′ blocks that contains

I uniformly distributed random variables in RQM algorithm.
I elements chosen in geometric progression for RQM-multi-shot.

I C ∈ Rm×p - Block diagonal matrix with k blocks and contains
multipliers chosen in harmonic progression.

Our Algorithm: RQM-Recovery from Quantized Modulo images

D
e

q
u

an
ti

za
ti

o
n

D
e

q
u

an
ti

za
ti

o
n

D
e

q
u

an
ti

za
ti

o
n

M
o

d
u

lo
 R

ec
o

ve
ry

Stagewise approach
I Dequantization:

Recover u from
y = Q(Cu) using HM
algorithm.

I Modulo recovery:
Recover z from
u = f (Dx) using
MF-Sparse [2] or
Multi-shot UHDR [1].

I Sparse recovery:
Recover x from z = Bx
using any stable sparse
recovery algorithm (e.g.
CoSaMP).

Algorithm:RQM

Inputs: y , D, B , C , k , k ′, Ω, s
Output: x̂
Stage 1: Harmonic dequantization
û ← HMDequantization(y ,C , k)
Stage 2: Modulo recovery[2]
θ ← exp(i û)
for l = 1 : q do

t ← D(l : q : (k ′ − 1)q + l , l)
φ← θ(l : q : (k ′ − 1)q + l)
ẑl = argmaxω∈Ω |〈y , ψω〉|

end for
ẑ ← [ẑ1, ẑ2 . . . , ẑq]T

Stage 3: Sparse recovery
x̂ ← CoSaMP(ẑ ,B , s)

HM Algorithm: Dequantization using Harmonic Multipliers

For every element ui , we measure yi ,j = Q(ci ,jui). with ci ,0 = 1, and each
subsequent ci ,j is defined as :

ci ,j =

{
k

k−j , if yi ,0 = 0,
k

k+j , if yi ,0 = 1,
j = 1, 2, ..., k − 1.

The underlying idea is to increase or decrease the value of ci ,jui gradually and
to detect the index j∗ for which yi ,j changes its value for the first time.

if yl = 0 then
t ← y(l+n : n : (k−1)n+ l , 1)
j∗← minj∈{1,2,..,k−1} s.t. tj = 1

ûl ← v ∼ U [∆k−j∗
k ,∆k−j∗+1

k ]
end if

if yl = 1 then
t ← y(l+n : n : (k−1)n+ l , 1)
j∗← minj∈{1,2,..,k−1} s.t. tj = 0

ûl ← v ∼ U [∆k+j∗−1
k ,∆k+j∗

k ]
end if

Experimental Results

Recovery from Quantized Modulo images

without sparsity
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