

Problem Setup

- Aim: Reliable estimation of a signal from periodic nonlinearities.
- Nonlinearity in each observation is well-modeled by a periodic function such as a sinusoidal function, or sawtooth function, or square-wave function.
- ► We focus on a periodic nonlinear observation model encountered in high-dynamic range (HDR) imaging.

HDR Imaging and Modulo camera [1]

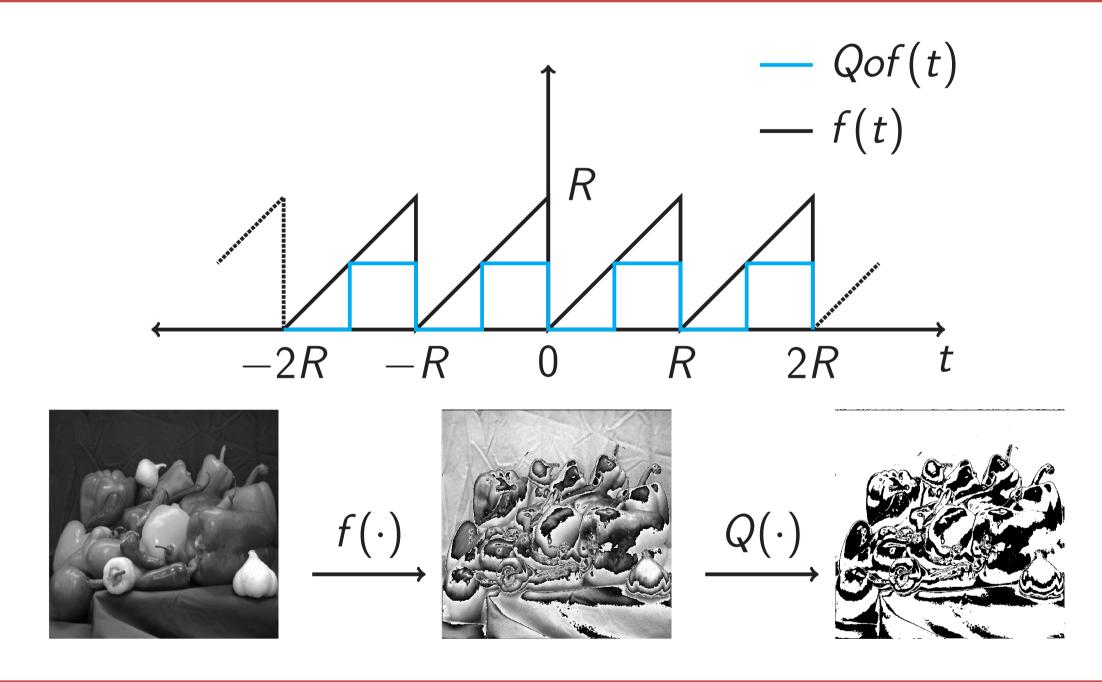
Intensity camera



Modulo camera

Recovered image [1]

Modulo operation and Quantization



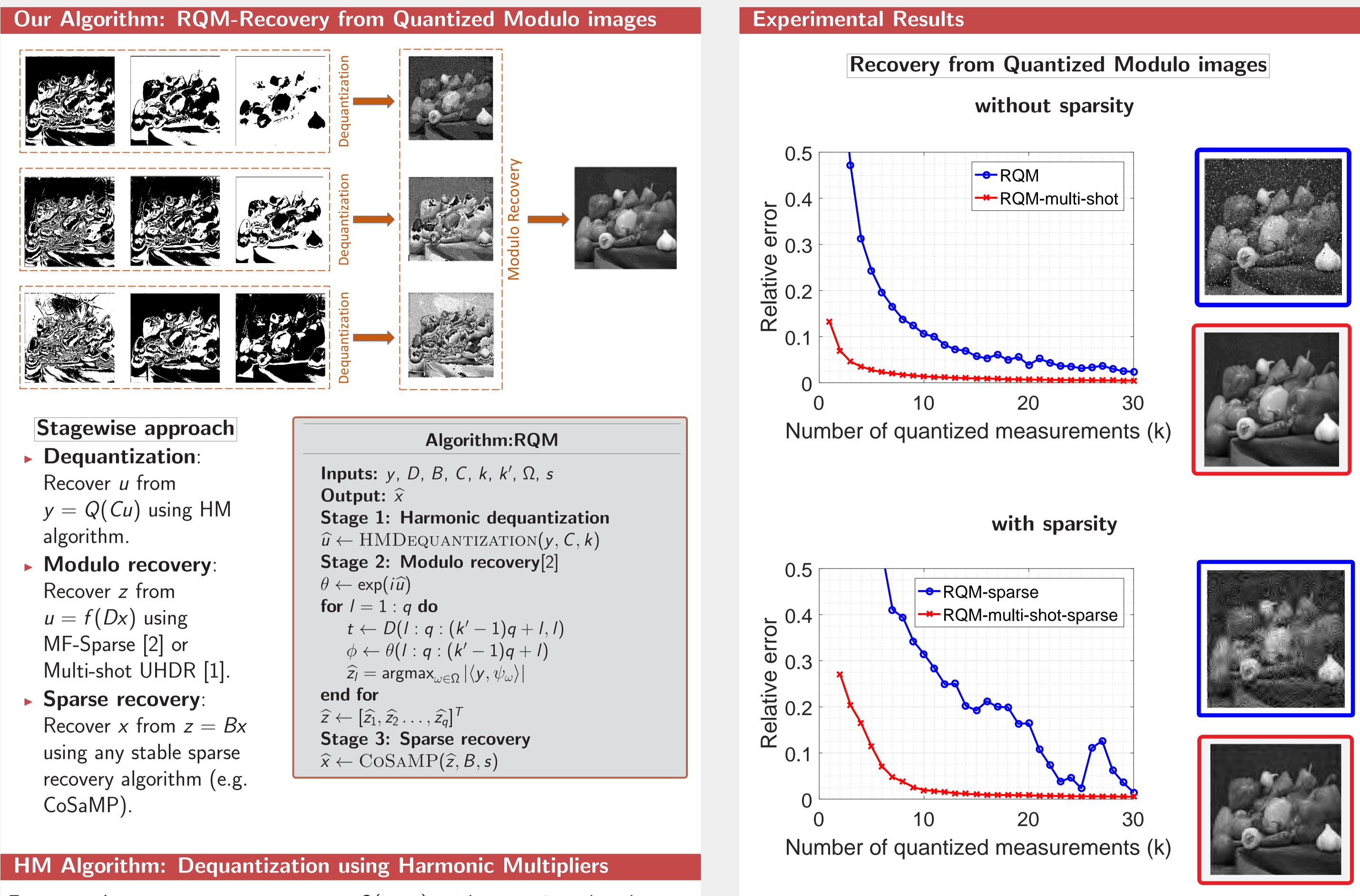
Mathematical Model

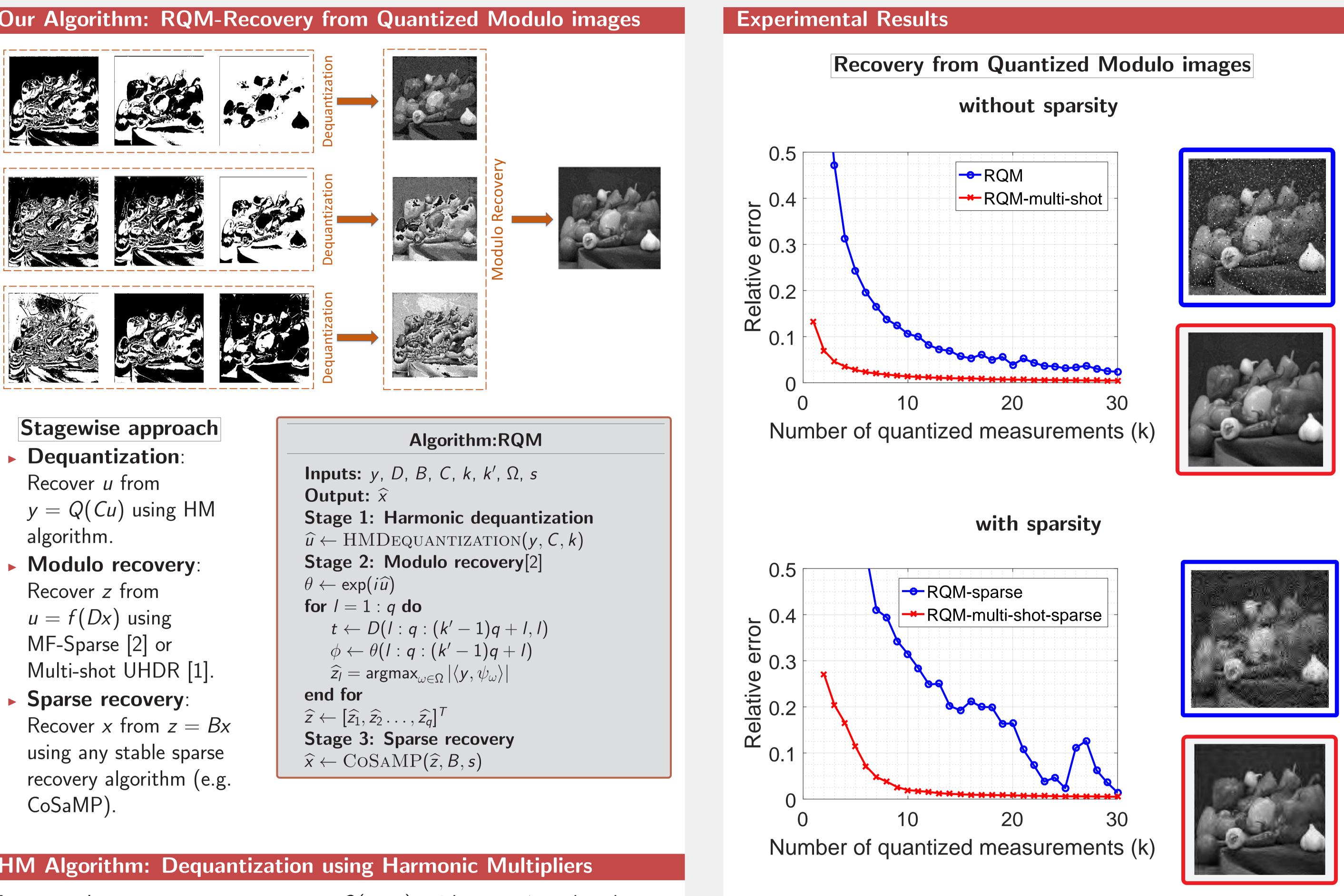
$$y = Q\left(\begin{bmatrix} C^{0} \\ C^{1} \\ \vdots \\ C^{k-1} \end{bmatrix} \mod \left(\begin{bmatrix} D^{1} \\ D^{2} \\ \vdots \\ D^{k'} \end{bmatrix} Bx \right) \right)$$

- ▶ $B \in \mathbb{R}^{q \times n}$ Sparse basis matrix satisfying RIP condition.
- \blacktriangleright $D \in \mathbb{R}^{p \times n}$ Block diagonal matrix with k' blocks that contains
- uniformly distributed random variables in RQM algorithm.
- elements chosen in geometric progression for RQM-multi-shot.
- $C \in \mathbb{R}^{m \times p}$ Block diagonal matrix with k blocks and contains multipliers chosen in harmonic progression.

RECONSTRUCTION FROM PERIODIC NONLINEARITIES, WITH APPLICATIONS TO HDR IMAGING

Viraj Shah, Mohammadreza Soltani, and Chinmay Hegde Department of Electrical and Computer Engineering



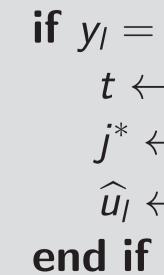


For every element u_i , we measure $y_{i,i} = Q(c_{i,i}u_i)$. with $c_{i,0} = 1$, and each subsequent $c_{i,i}$ is defined as :

$$c_{i,j} = egin{cases} rac{k}{k-j}, & ext{if } y_{i,0} = 0, \ rac{k}{k+j}, & ext{if } y_{i,0} = 1, \end{cases} \quad j =$$

The underlying idea is to increase or decrease the value of $c_{i,i}u_i$ gradually and to detect the index j^* for which $y_{i,j}$ changes its value for the first time.

if $y_l = 0$ then $t \leftarrow y(l+n:n:(k-1)n+l,1)$ $t \leftarrow y(l+n:n:(k-1)n+l,1)$ $j^* \leftarrow \min_{j \in \{1, 2, ..., k-1\}} \text{ s.t. } t_j = 1$ $\widehat{u}_{l} \leftarrow v \sim U[\Delta \frac{k-j^{*}}{k}, \Delta \frac{k-j^{*}+1}{k}]$ end if



- = 1, 2, ..., k 1.

if $y_l = 1$ then $j^* \leftarrow \min_{j \in \{1,2,\dots,k-1\}} \text{s.t. } t_j = 0$ $\widehat{u}_{l} \leftarrow v \sim U[\Delta \frac{k+j^{*}-1}{k}, \Delta \frac{k+j^{*}}{k}]$

Acknowledgments

This work was supported in part by grants from the National Science Foundation and NVIDIA.

References

[1] H. Zhao, B. Shi, C. Fernandez-Cull, S. Yeung, and R. [2] M. Soltani and C. Hegde, "Stable recovery from random sinusoidal (ICASSP), 2017

IOWA STATE UNIVERSITY

Raskar. "Unbounded High Dynamic Range Photography using a Modulo Camera." Intl. Conf. on Comp. Photography (ICCP), 2015.

feature maps." IEEE Int. Conf. Acoust., Speech, and Signal Processing