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Linear Inverse Problems: Introduction

Amxny =

x*m<n

I Problems of the form y = Ax∗ + e, where,
I x∗ ∈ Rn is the target signal or image,
I A ∈ Rm×n is the linear operator,
I y ∈ Rm is measurements, e ∈ Rm is stochastic noise.

I Aim: To recover the unknown signal x∗ given y and A.
I Such problems arise in diverse fields such as computational imaging,

optics, and astrophysics.

Linear Inverse Problems in Signal and Image Processing

I Denoising: it is the simplest case, with A being identity.
I Super-resolution: A represents a low-pass filter+ down-sampling.
I Image inpainting: A is pixel-wise selection operator.
I Compressive sensing: A is fat random matrix with m < n.
I In most cases, m < n =⇒ N(equations) < N(variables) =⇒
ill-posed =⇒ infinite many solutions are possible, but only few of
them are the required ‘natural’ signals (or images).

Common Solution to Linear Inverse Problems

I Restrict the solution space using a ‘natural signals prior’ as a
constraint, which results in constrained optimization problem:

x̂ = argmin f (y ;Ax), (1)

s. t. x ∈ S,
I f (·) is the loss function, and,
I set S ⊆ Rn captures a structure that x is a priori assumed to obey.

Sparsity Prior and its Limitations

I S is defined as the set of sparse vectors; basic assumption is that
the ‘natural’ signals are sparse in some basis. However,

I It suffers from poor discriminatory capacity.
I Not all sparse vectors are ‘natural’ images.
I Performs very poorly for m << n.
I Nature exhibits far richer nonlinear structure than sparsity alone.

Our Approach: GAN Priors with Projected Gradient Descent

I Learned GAN Prior: Learns the structure of the ‘natural’ signals
from training data using Generative Adversarial Networks (GAN)[1].

I G (·) maps latent variable z ∈ Rk to the ambient signals x ∈ Rn.
I Key assumption: the generator G (·) well-approximates the set S.
I Substituting x = G (z) in Eq.(1), the resulting problem[1] is the

optimization in the latent space (over z) =⇒ can stuck in local
minima.

I Thus, we advocate Projected Gradient Descent to solve the
Eq.(1) directly in ambient space (over x).

Our Algorithm: Projected Gradient Descent on GAN (PGD-GAN)

I We aim to solve for x̂ , given y and A:

x̂ = argmin
x∈S

‖y − Ax‖2
2. (2)

with S ≡ span(G ).
I We train the generator G : Rk → Rn:
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Learning a 'natural' image prior through GAN training

I With pre-trained generator(G ), apply Projected Gradient Descent in 2 steps:
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Calculate an estimate wt using gradient
descent update rule on the loss function,

f (x) := ‖y − Ax‖2
2.

Thus, update at tth iteration is,

wt ← xt + ηAT (y − Axt),

Find an image from the span of the generator
which is closest to our current estimate wt.

PG (wt) := G

(
argmin

z
fin(z)

)
,

where, fin(z) := ‖wt − G (z)‖2
2.

Gradient descent update
Projection on the span of generator

Reconstruction

Illustration of our approach on MNIST datasetInitialization

Proof of Convergence for our algorithm

I We need a condition on A to ensure that A preserves the uniqueness of x .
I No sparsity prior =⇒ Restricted Isometry Property (RIP) can’t be used.
I We use slightly modified version of S − REC Set Restricted
Eigenvalue Condition as defined in [1]:

I Def. 1: Let S ∈ Rn. A ∈ Rm×n. For parameters γ > 0, δ ≥ 0, A
satisfies the S-REC(S, γ, δ) if, ‖A(x1 − x2)‖2 ≥ γ‖x1 − x2‖2 − δ, for
∀x1, x2 ∈ S.

I Gaussian A satisfies the S − REC condition for sufficiently large m [1].
I Given that S − REC is satisfied, we prove that the sequence (xt) defined

by the PGD-GAN with y = Ax∗ converges to x∗ with high probability.

Experimental Results

on MNIST dataset
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