

A_{mxn}

m<n

Linear Inverse Problems: Introduction

- Problems of the form $\mathbf{y} = \mathbf{A}\mathbf{x}^* + \mathbf{e}$, where,
 - ▶ $x^* \in \mathbb{R}^n$ is the target signal or image,
 - \blacktriangleright $A \in \mathbb{R}^{m \times n}$ is the linear operator,
 - ▶ $y \in \mathbb{R}^m$ is measurements, $e \in \mathbb{R}^m$ is stochastic noise.
- Aim: To recover the unknown signal x^* given y and A.
- Such problems arise in diverse fields such as computational imaging, optics, and astrophysics.

Linear Inverse Problems in Signal and Image Processing

- **Denoising:** it is the simplest case, with A being identity.
- **Super-resolution:** A represents a low-pass filter+ down-sampling.
- ► Image inpainting: A is pixel-wise selection operator.
- Compressive sensing: A is fat random matrix with m < n.
- In most cases, $\mathbf{m} < \mathbf{n} \implies \mathsf{N}(\mathsf{equations}) < \mathsf{N}(\mathsf{variables}) \implies$ **ill-posed** \implies infinite many solutions are possible, but only few of them are the required 'natural' signals (or images).

Common Solution to Linear Inverse Problems

Restrict the solution space using a 'natural signals prior' as a constraint, which results in constrained optimization problem:

$$\widehat{x} = \operatorname{argmin} f(y; Ax),$$

s. t.
$$x \in \mathcal{S}$$
,

- $f(\cdot)$ is the loss function, and,
- ▶ set $S \subseteq \mathbb{R}^n$ captures a structure that x is a priori assumed to obey.

Sparsity Prior and its Limitations

- \triangleright S is defined as the set of sparse vectors; basic assumption is that the 'natural' signals are sparse in some basis. However,
- It suffers from poor discriminatory capacity.
- ► Not all sparse vectors are 'natural' images.
- ▶ Performs very poorly for m << n.
- ► Nature exhibits far richer nonlinear structure than sparsity alone.

Our Approach: GAN Priors with Projected Gradient Descent

- **Learned GAN Prior:** Learns the structure of the 'natural' signals from training data using Generative Adversarial Networks (GAN)[1].
- $G(\cdot)$ maps latent variable $z \in \mathbb{R}^k$ to the ambient signals $x \in \mathbb{R}^n$.
- Key assumption: the generator $G(\cdot)$ well-approximates the set S.
- Substituting x = G(z) in Eq.(1), the resulting problem [1] is the optimization in the latent space (over z) \implies can stuck in local minima.
- Thus, we advocate Projected Gradient Descent to solve the Eq.(1) directly in ambient space (over x).

SOLVING LINEAR INVERSE PROBLEMS USING GAN PRIORS, AN ALGORITHM WITH PROVABLE GUARANTEES

Viraj Shah and Chinmay Hegde Department of Electrical and Computer Engineering

Proof of Convergence for our algorithm

- **Eigenvalue Condition** as defined in [1]:
- $\forall x_1, x_2 \in \mathcal{S}.$

Experimental Results

Number of measurements (m)

Acknowledgments

This work was supported in part by grants from the National Science Foundation and NVIDIA.

References

[1] A. Bora, A. Jalal, E. Price, and A. Dimakis, "Compressed Sensing using Generative Models," Proc. Int. Conf. Machine Learning (ICML), 2017.

IOWA STATE UNIVERSITY

 \blacktriangleright We need a condition on A to ensure that A preserves the uniqueness of x. ▶ No sparsity prior \implies Restricted Isometry Property (RIP) can't be used. • We use slightly modified version of S - REC Set Restricted ▶ **Def. 1:** Let $S \in \mathbb{R}^n$. $A \in \mathbb{R}^{m \times n}$. For parameters $\gamma > 0$, $\delta \ge 0$, A

satisfies the S-REC($\mathcal{S}, \gamma, \delta$) if, $\|A(x_1 - x_2)\|^2 \ge \gamma \|x_1 - x_2\|^2 - \delta$, for

• Gaussian A satisfies the S - REC condition for sufficiently large m [1]. • Given that S - REC is satisfied, we prove that the sequence (x_t) defined by the PGD-GAN with $y = Ax^*$ converges to x^* with high probability.

on celebA dataset