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Linear Inverse Problems: Introduction Our Algorithm: Projected Gradient Descent on GAN (PGD-GAN) Proof of Convergence for our algorithm
» Problems of the form y = Ax" + e, where, . » We aim to solve for X, given y and A: » We need a condition on A to ensure that A preserves the uniqueness of x.
% n : . : Y= s o . . . ;
- x"eR ><IS the target signal or image, * % = argmin ||y — Ax||2 (2) » No sparsity prior = Restricted Isometry Property (RIP) can’t be used.
mxn : . < X ) . . . .
- A€ Rm b the linear operator,m | = x€S » We use slightly modified version of S — REC Set Restricted
» y € R™ is measurements, e € R" is stochastic noise. with S = span(G). Eigenvalue Condition as defined in [1]
> Aim: To recover.the. “”lf”OW” _s.lgnal X" given y and A o » We train the generator G : RK — R": » Def. 1: Let S € R". A€ R™". For parameters v >0, 0 >0, A
g SUC.h prOblemS arise I_n diverse fields such as ComPUtatlonal Imaging, T """ t h """" h Learning a 'natural' image prior through GAN training satisfies the S—REC(S, Y, 5) If, HA(Xl — X2)H2 > vHxl — X2H2 — 5, for
optics, and astrophysics. Rl (8 \ Vx, % € S.
Real < : . . - . . .
Linear Inverse Problems in Signal and Image Processing mages Lyl . 1 | » Gaussian A satisfies the 5 — REC condition for sufficiently large m [1].
S | | - - Iy — o » Given that S — REC is satisfied, we prove that the sequence (x;) defined
: g RN . £~~5"0 00 o >=="ol | . L -
» Denoising: it '.5 the simplest case, with A be.lng identity. | | H G() R ZOS_OS : o o ©° %0 ol by the PGD-GAN with y = Ax™ converges to x* with high probability.
» Super-resolution: A represents a low-pass filter+ down-sampling. o o ' 00 o LonaEinaeS o o N
. « . : : : : i e S~=7 N° O O — -
» Image inpainting: A is pixel-wise selection operator. p I> G(.) | S T SN ST Experimental Results
» Compressive sensing: A is fat random matrix with m < n. A ~_ on MNIST dataset
> In most cases, m < n = N(equations) < N(variables) = T
ill-posed — infinite many solutions are possible, but only few of . . . . . e 0L2F T ASSO |
P C y, . P ’ y » With pre-trained generator(G), apply Projected Gradient Descent in 2 steps 5 o1 e LASSO
them are the required ‘natural’ signals (or images). T 2 U - CSGM[1] |
- . 1. Gradient Descent Update Step 2. Projection Step |- > Optimization using 2 0.03 f = PGD-GAN ]
Common Solution to Linear Inverse Problems a Gradient Descent i © 006 | !
: O * |
» Restrict the solution space using a ‘natural signals prior’ as a A y | E G 0.04 1 |
constraint, which results in constrained optimization problem: ! + """" ~ % 0.02 | |
~ . E \\\\ E 8 O ‘ B e B
x = argmin f(y; Ax), (1) i . \ A K2 40 80 120 160 200
s. t. x€ S, Gradlsgtctigceescent i Number of measurements (m)
» f(-) is the loss function, and, | on —> G(.) K
; . .y ; AP on celebA dataset
» set S C R” captures a structure that x is a priori assumed to obey. 1y - Ax][3 |
Sparsity Prior and its Limitations / =
Xt Wt 20
» S is defined as the set of sparse vectors; basic assumption is that O
the ‘natural’ signals are sparse in some basis. However, Calculate an estimate w; using gradi.ent Fin.d an image from the span of th.e generator
.. . descent update rule on the loss function, which is closest to our current estimate w;. o
» It suffers from poor discriminatory capacity. . . o B
i ) - = — - . - (O e
» Not all sparse vectors are ‘natural’ images. (x) = lly = Ax]l; Pe (w:) =G <af€m'n f,-,,(z)) : —
5 Thus, update at t iteration is, z |
» Performs very poorly for m << n. . e 1 (Z) - HWt . G(Z)H2. —
o . . . wy < x; + nA (v — Axy), o 2 'g
» Nature exhibits far richer nonlinear structure than sparsity alone. =
Initialization Illustration of our approach on MNIST dataset
=
» Learned GAN Prior: Learns the structure of the ‘natural’ signals . S5
from training data using Generative Adversarial Networks (GAN)[1]. = Deconstruction ] *~
» G(-) maps latent variable z € R to the ambient signals x € R”". 7 -
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» Key assumption: the generator G(-) well-approximates the set S. ﬁ —

optimization in the latent space (over z) = can stuck in local
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