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Inverse Problems
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Quantity, or
Phenomena;

x∗
Observations,
or Data; y

Inverse model

Forward model

y = H(x∗)

• Given x∗, determining y or (H) is a Forward Modeling Problem;
• Given y, determining x∗ is an Inverse Modeling Problem.

Example:
• Forces on a particle are x∗, trajectory of the particle is y.

Inverse problems are widely encountered in:
• Signal (or image) acquisition, optics, astrophysics, and seismic geo-exploration.



Inverse Problems in Signal Acquisition Systems
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Natural image/
signal, x∗ ∈ Rn

Acquisition system
H

Observations
H(x∗) = y ∈ Rm

Inverse problem

Goal is to recover x∗, given the H and y.

Challenge 1: High sample complexity:

• In general, large number of observations may needed for accurate solution;
• Requires m ≥ n, implying over-determined system.

Obtaining large number of measurements is expensive

Use the fact that the natural signals are compressible!



Compression of the Natural Signals
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It is observed empirically that the natural signals can be compressed.

• I.e., A stored natural signal can be well approximated by sparse signal.
• Sparse signal: a signal with most of its components equal to zero.
• Sparse approximation is obtained by appropriate change of basis.
• Commonly used basis are: JPEG (DCT), or wavelet basis.

Original image (left), and its compressed version using DCT (right)

Why to take overdetermined samples in first place?

How to use the compression property during the signal acquisition itself?



Compressive Sensing
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• Aim is to acquire the compressed version of a signal directly with m≪ n.
• Ill-posed problem, with infinite solutions in general.
• Achieved by exploiting the compressibility of the signal.

The natural signals obey some low-dimensional structure

If such structure is known, accurate reconstruction is possible with m≪ n

Formally, We aim to solve a constrained optimization problem:

x̂ = argmin F(x∗), (1)
s. t. x∗ ∈ S,

where,

• where F is an objective function involving y and H, e.g. F(x) = ∥y−H(x)∥22
• The set S ⊆ Rn captures the structure that x obeys.

Common choices for S : Sparsity, structured sparsity, total variation.



Sparsity as a Prior
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The prior S = {x ∈ Rn|∥x∥0 ≤ s}

• Most natural signals and images are sparse in some basis,
• It makes the sparsity the obvious choice as a prior.
• Under certain conditions, perfect recovery can be achieved.

Disadvantages:

• Poor discrimination capabilities: many noise-signals are sparse.
• Performs poorly when m is very low, as no learned information about the
signal manifold.

These are sparse in DCT basis, but don’t resemble to natural images!



Generative Model as a Prior
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The prior S should closely mimic the natural signals manifold.

• Such S can be obtained by generative models trained on natural data.
• State-of-the-art deep generative models (e.g. GANs) can be employed.

Generative Adversarial Networks (GANs):

• Mimics the natural data distribution through adversarial training,
• Input is a random vector z, the output G(z) resembles a natural image.

Generative Prior:
S = {x ∈ Rn | x = G(z), z ∈ Rk}.

Real
Images 

from
Dataset

G(.)z

X
fa

ke
X

re
a
l

(R
e
a
l D

a
ta

)

D(.)
real

fake

k

Training through 
Back-propagation

G(.)zk S: Set of natural images

Learning a 'natural' image prior through GAN training



Problem Setup
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We aim to recover x∗ ∈ Rn given H, and H(x) = y ∈ Rm.

• We assume m≪ n.
• H is parameterized by matrix Am×n.

H(·) is linear =⇒ Linear inverse problem

Imaging problem of the form y = Ax∗:

• Compressive sensing, where m≪ n, and A is i.i.d. Gaussian.
• Image inpainting, where rows of A contains blocks of zeros.
• Image super-resolution, with A being downsampling operator.

H(·) is nonlinear =⇒ Nonlinear inverse problem

For e.g.:

• Sigmoid recovery; with H(x) = sigmoid(Ax) + noise
• Phase retrieval, with H(x) = |Ax|+ noise



Employing Generative Priors: Prior Work (CSGM [1])
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Key assumption:

• The range of well-trained G provides good approximation of set of natural
images.

CSGM (Bora et al.):

• Obtain a well-trained Generator G : Rk → Rn.
• Construct the estimate x̂ as follows:

ẑ = arg min
z∈Rk
∥y− AG(z)∥22, x̂ = G(ẑ) (2)

• Solve for ẑ, to obtain x̂ = G(ẑ).

Limitations:

• No discussion about an algorithm to perform non-convex optimization of
Eqn. (2).

• Instead, they use gradient descent directly on Eqn. (2)
• Study of the algorithmic costs of solving the optimization is not provided.



Our Contributions
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In this work,

• We propose a PGD algorithm for solving linear inverse problems.
• We provide proof of linear convergence of our algorithm.
• We extend the algorithm to a much wider range of nonlinear
problems.

• We present empirical results supporting our claims.
• We also extend our approach to handle model mismatch.

Key assumptions:

• Availability of a well-trained Generator G.
• Availability of a projection oracle onto G (PG);
• Given any vector x ∈ Rn,
x′ = PG(x) ∈ Range(G) that minimizes
∥x− x′∥22.



PGD Algorithm
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For linear case of compressive sensing, we set A as i.i.d. Gaussian, F as
Euclidean norm. We seek,

x̂ = F(x) = argmin
x∈G(z)

∥y− Ax∥22 (3)

PGDGAN: Projected Gradient Descent using GAN priors

1. Initialization: Initialize x0 with zero vector.

2. Estimation: For t = 1, 2, ..., T:

• Gradient descent update.

• Projection on the span of generator (G).

Gradient descent update
Projection on the span of generator

Reconstruction

Initialization



PGD Algorithm
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Step 1: Gradient Descent Update
application of a gradient descent update rule on the loss function F(·) with
the learning rate η.

wt ← xt + ηAT(y− Axt)

Step 2: Projection

xt+1 = PG (wt) := G
(
argmin

z
∥wt − G(z)∥

)
,

We use gradient descent (implemented
via back-propagation) as a projection
oracle, with learning rate ηin.

PG(wt)

wt

∥xt − wt∥

xt
G(z)

∥xt+1 − PG(wt)∥

• In each of the T iterations, we run Tin gradient descent updates for
calculating the projection.
T× Tin is the total number of gradient descent updates on G



Linear Convergence of PGDGAN Algorithm
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Theorem (Guarantee: linear convergence)
Under certain conditions on A and m, the sequence (xt) defined by the PGDGAN
algorithm with converges to x∗ with high probability.

F(xt+1) ≤
(
1
ηγ

− 1
)
F(xt)

Proved using:

• The difference of any two signals in S lies away from nullspace of A. (Set
Restricted Eigenvalue Condition).

• Spectral norm of A is upper-bounded by √γ.
• PG(·) is a orthogonal projection operator.
• The learning rate obeys: 1

2γ < η < 1
γ



Experimental Setup: Compressive Sensing

• We provide results on two different datasets using two different GAN
architectures.

• The results are compared with the CSGM [1], and Lasso-DCT [5].

• MNIST Dataset:
• We construct a simple GAN with both G and D are fully-connected neural
networks with one hidden layer.

• G is constructed as: 20− 200− 784; D is constructed as 784− 128− 1.
• Dimensions of the input z is k = 20.
• Test images are chosen from the range of the G to get rid of representation
error.

• T = 15 and Tin = 200. Thus, the total number of update steps is fixed to
3000.

• For comparison, we use the reconstruction error = ∥x̂− x∗∥2 .
• We reconstruct the images with m = 100 measurements.

13



Experimental Results: Compressive Sensing
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PGDGAN is able to explore the space outside the range of G

Helps in mitigating the effects of local minima

Doesn’t require random restarts
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Experimental Results: Compressive Sensing for CelebA
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Reconstruction results on CelebA:

• We use DCGAN with both G and D are CNNs with 4 hidden layers each.

• Dimensions of the input z is k = 100.

• Test images are kept unseen during training.

• Total number of updates is set to 1000, with T = 10 and Tin = 100.

• We reconstruct the images with m = 1000 measurements.



Extension to Nonlinear Inverse Problems
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We extend the above algorithm for nonlinear inverse problems:

• We generalize the loss function to be F(·) and the projection oracle to PG.

• Assume that the F has a continuous gradient ∇F =
(

∂F
∂xi

)n
i=1
.

• We define the ε-approximate projection oracle PG as,

Approximate projection
A function PG : Rn → Range(G) is an ε-approximate projection oracle if for
all x ∈ Rn, PG(x) obeys:

∥x− PG(x)∥22 ≤ min
z∈Rk
∥x− G(z)∥22 + ε.

ϵ−PGD Algorithm:

• Initialization: x0 ← 0
• Gradient update step: wt ← xt − η∇F(xt)
• Projection step: xt+1 ← PG(wt)



ϵ− PGD: Theoretical Results

The analysis for linear problem is a special case of the above theorem.
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Theorem (Linear Convergence of ϵ−PGD)
Under certain conditions on F, ϵ-PGD algorithm convergences linearly up to a
ball of radius O(γ∆) ≈ O(ε).

F(xt+1)− F(x∗) ≤
(
β

α
− 1

)
(F(xt)− F(x∗)) + O(ε) .

Proved using:

• F follows Restricted Strong Convexity/Smoothness conditions with
constants α, β.

• Gradient at the minimizer is small:∥∇F(x∗)∥2 ≤ γ

• Range of G is compact: diam(Range(G)) = ∆.
• γ∆ ≤ O(ε).
• 1 ≤ β

α
< 2



Solving Nonlinear Inverse Problems using ϵ−PGD
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We provide empirical results for two nonlinear inverse problems.

1. Sinusoidal model, with
H(x) = Ax+ sin(Ax).

• We use l2−loss as F.

H(t) = t+ sin(t)

t

2. Sigmoid model, with
H(x) = sigmoid(Ax) = 1

1+exp(−Ax) .

• We use a loss function
specified as:

F(t) = 1
m

m∑
i=1

(
Θ(aTi t)− yiaTi t

)
,

where, Θ(·) is integral of H(·),
and ai represents the rows of
the measurement matrix A.

H(t) = sigmoid(t)

sigmoid′(t)
t

The gradient of the loss:

∇F(t) = 1
mA

T(sigmoid(At)− y).



Experimental Results: Nonlinear Inverse Problems

• We perform the experiments on CelebA Dataset:
• We use DCGAN with both G and D are CNNs with 4 hidden layers each.
• Dimensions of the input z is k = 100.
• Test images are kept unseen during training.
• Total number of updates is set to 1000, with T = 10 and Tin = 100.
• We reconstruct the images with m = 1000 measurements.
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(a) Sinusoidal model; (b) Sigmoid model.
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Extension to Phase Retrieval Problem
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We also extend the algorithm for phase retrieval problem:

1. Phase retrieval,

x̂ = argmin
x
∥y− |Ax|∥2

s.t. x = G(z), t
sgn(t) = 1sgn(t) = −1

g(t)

g(t) = abs(t)

Alternating Phase Projected Gradient Descent:
1: Inputs: y, A, G, T, Output: x̂
2: Choose an initial point x0 ∈ Rn

3: for t = 1,…T do
4: pt−1 ← sgn(Axt−1)

5: wt−1 ← xt−1 + ηAT(y⊙ pt−1 − Axt−1)

6: xt ← PG(wt−1) = G (argminz ∥wt−1 − G(z)∥)
7: end for
8: x̂← xT



A Note on Representation Error
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Three sources of this error:

• Representation error: the image being sensed is not in the range of G,
• Measurement error: measurements do not contain all the information,
• Optimization error: The optimization procedure did not find the best x.

Representation error is dominant term.
Superior GAN models can reduce representation errors.

(a) Glow model [3], (b) Progressive-GAN model [2].



Summary and future work

Summary:

• Novel PGD-based algorithms with theoretical guarantees
• Works for variety of linear and nonlinear inverse problems
• Extension to phase retrieval problem

Future directions:

• Extend to modulo recovery and other nonlinear problems
• Employing state-of-the-art generative priors such as deep image priors

22



Questions?
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Modulo Recovery
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Reconstruction from Periodic Non-linearities [4], Spring 2017

V. Shah and M.Soltani and C. Hegde,
Reconstruction from Periodic Nonlinearities, with Applications to HDR Imaging,
Asilomar Conference on Signals, Systems, and Computers, November 2017.

t0

R

R 2R−R−2R

Qof(t)

f(t)

f(·) Q(·)
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Reconstruction from Periodic Non-linearities [4]
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Appendix



Linear Convergence of PGDGAN Algorithm

The difference vector of any two signals in the set S should lie away from
the nullspace of the matrix A.

S-REC (Set Restricted Eigenvalue Condition)
Let S ∈ Rn. A is m× n matrix. For parameters γ > 0, δ ≥ 0, matrix A is said
to satisfy the S-REC(S, γ, δ) if,

∥A(x1 − x2)∥2 ≥ γ∥x1 − x2∥2 − δ,

for ∀x1, x2 ∈ S .

Theorem (Guarantee: linear convergence)
Let G be a generator with range S . A is satisfying the S-REC(S, γ, δ) with probability
1− p, and has ∥Av∥ ≤ ρ∥v∥ for every v ∈ Rn with probability 1− q. ρ2 ≤ γ.
Then, for every x∗ ∈ S , the sequence (xt) defined by the PGDGAN algorithm
converges to x∗ with probability at least 1− p− q.



ϵ− PGD: Theoretical Results

We introduce more general restriction conditions on the F(·):

Restricted Strong Convexity/Smoothness
Assume that F satisfies ∀x, y ∈ S:

α

2 ∥x− y∥
2
2 ≤ F(y)− F(x)− ⟨∇F(x), y− x⟩ ≤

β

2 ∥x− y∥
2
2.

for positive constants α, β.

Theorem (Linear Convergence of ϵ−PGD)
If F satisfies RSC/RSS over Range(G) with constants α and β, then ε-PGD
algorithm convergences linearly up to a ball of radius O(γ∆) ≈ O(ε).

F(xt+1)− F(x∗) ≤
(
β

α
− 1

)
(F(xt)− F(x∗)) + O(ε) .

The analysis for linear problem is a special case of the above theorem.
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