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* Personalization methods like DreamBooth fine-tune
diffusion models to obtain novel renditions of specific
concepts, such as objects, or artistic styles.

* Preferred way for efficient fine-tuning is to use Low
Rank Adaptation (LoRA).

* While personalization methods work for subjects and styles

user-provided subject in a specific user-provided style.
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ZipLoRA can merge independently trained subject and style
LoRAs, enabling consistent, customizable stylization and
recontextualization for a variety of combinations.
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1. LoRA weight matrices are sparse
* Most elements in the LoRA weight matrix have .

very small magnitude and have little effect on
generation quality and fidelity.
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2. Highly aligned LoRA weights merge poorly

Directly summing columns of weight matrices that are highly aligned
degrades performance of the merged model.
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ZipLORA: Any Subject in Any Style by Effectively Merging LoRAs
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Orthogonality Loss

« ZipLoRA keeps the original LORA weights frozen and multiply each column with a learnable merger coefficient m!. / m.. .

Orthogonality Loss minimizes the interference between two LoRAs by making m,. and m disjoint

Reconstruction Loss conserves the ability to generate the subject and style independently

Direct
arithmetic
merge

Joint

Training

StyleDrop

+
DreamBooth

Custom
Diffusion

Mix of Show

Ours

A[Vldog...

watercolor
painting style

... in flat cartoon

illustration style :

' &iﬁii‘l%
' O

A [V] teapot ...

... in 3d rendering

Subject and Style Referneces

Stylization: Qualitative Comparison
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Recontextualizations using our method
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ZipLoRA allows for controlling the extent of stylization

User Study Results

% preference for ZipLoRA over:

Direct Joint StyleDrop  Mix of Custom
Merge Training Show Diffusion

82.7% 71.1% 68.0% 87.3% 88.1%

Limitations

A cliff in watercolorg Style Learning by SDXL Custom Stylizations by ZipLoRA
painting style 1 A putterflyin.. Anavocadoin..i [V]toy in.. [Vldogin..

e T |

For a few styles, content leaks in stylization outputs

Experimental Setup:

+ SDXL is used as the base model.
« mL/m areinitialized as all Ts.
» ZipLoRA typically takes <100 iterations to converge.

: More results available at:

https://ziplora.github.io



