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• Personalization methods like DreamBooth fine-tune 
diffusion models to obtain novel renditions of specific 
concepts, such as objects, or artistic styles.

• Preferred way for efficient fine-tuning is to use Low 
Rank Adaptation (LoRA).
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1. LoRA weight matrices are sparse 2. Highly aligned LoRA weights merge poorly

watercolor painting[V] dog

[V] dog kid crayon drawing

[V] object in [S] Style
ws = 1.0 ws = 0.7 ws = 0.4

ΔW1 ΔWN

ΔW1 ΔWN

✕ ✕

✕ ✕

Ls

Lc

Lc+s

. . .

. . .

A [V] 
dog

Flowers
 in [S] style

A [V] 
dog

Flowers
 in [S] style

D + Lc+s

D + Lc+s

D + Ls

D + Lc
Base U-net

backprop

-

-

||

||||

||

2

2
✕ ✕

✕ ✕

Flowers
 in [S] style

✕ ✕

✕ ✕

Lc+s

A [V] 
dog

Flowers
 in [S] style

D + Lc+s

D + Lc+s

-

-||

||
Lc+s

A [V] 
dog

Flowers
 in [S] style

D + Lc+s

D + Lc+s

-

- ||

||

𝑚!
"

𝑚#
"

Subject and Style Reconstruction Loss Orthogonality Loss

{virajshah, natanielruiz}@google.com

Content Images

Lc

“A [V] dog”

Content 
LoRA

Style Image

Ls

“Flowers in [S] style”

Style 
LoRA

DreamBooth
LoRA

Fine-tuning
LoRA

AdapterA [V] dog

• While personalization methods work for subjects and styles 
independently, a key unsolved problem is to generate a specific 
user-provided subject in a specific user-provided style. 

• ZipLoRA can merge independently trained subject and style 
LoRAs, enabling consistent, customizable stylization and 
recontextualization for a variety of combinations.
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• Most elements in the LoRA weight matrix have 
very small magnitude and have little effect on 
generation quality and fidelity. 

• Directly summing columns of weight matrices that are highly aligned
degrades performance of the merged model. 

• ZipLoRA keeps the original LoRA weights frozen and multiply each column with a learnable merger coefficient 𝑚𝑐
𝑖 / 𝑚𝑠

𝑖 . 

Orthogonality Loss minimizes the interference between two LoRAs by making 𝑚𝑐 and 𝑚𝑠 disjoint
Reconstruction Loss conserves the ability to generate the subject and style independently

Stylization: Qualitative Comparison
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Recontextualization

Limitations

Style Controllability

ZipLoRA allows for controlling the extent of stylization 

For a few styles, content leaks in stylization outputs 

User Study Results

Experimental Setup: 

• SDXL is used as the base model.
• 𝑚!

" / 𝑚#
" are initialized as all 1s.

• ZipLoRA typically takes <100 iterations to converge.
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82.7% 71.1% 68.0% 87.3% 88.1%

More results available at: 

https://ziplora.github.io


