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GANs Applications



How to evaluate performance of GAN?
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Slide from Jun-Yun Zhu, CMU



Recent Trends in Evaluation of Generative Models

f Stable Diffusion v1.5 Stable Diffusion v2.1

~\

* Metrics that align human preferences
* VOAScore

* TIFA
Text Input: A person sitting on a horse in air over gate in grass

* Human-ln_the-loop StUdles L with people and trees in background. P

+ LMArena:

Question: what is the animal?

i l.ma re naal/leaderbOa rd/teXt-tO-Image Choices: cow, horse, sheep, dog Answer: horse
VQA: Horse Q Horse Q

Question: is there a gate?
Choices: yes, no Answer: yes

VQA: No € Yes @&

Question: is the horse in air?
Choices: yes, no Answer: yes

VQA: No e Yes Q

( Accuracy on 14 questions J

. » TIFA 714 100.0

+ Fine-Grained «/Accurate «/Interpretable

A
'- L :
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https://lmarena.ai/leaderboard/text-to-image

GANSs: Applications

* Rich representation of the image data
* Smooth latent space with interpolation capabilities

* Fast, single step inference



Image Restoration using GANs

GAN

trained on human faces w

GAN Image Space =~ Set of all human faces

Corrupted Image




Image Restoration using GANs

Find the closest image
in the GAN Image
Space

Corrupted Image
GAN
trained on human faces

GAN Image Space =~ Set of all human faces

Solving Inverse Problems using GAN priors, V. Shah et al., ICASSP ‘18



Image Restoration using Generative Models

Find the closest image
in the GAN Image
P S | Space

Corrupted Image . _
GAN w* = argmin [y —GW)|[,

trained on human faces

GAN Image Space =~ Set of all human faces

Restored Image

Provable algorithms for solving:
* Image Restoration

* Image Denoising, Inpainting etc.

Solving Inverse Problems using GAN priors, V. Shah et al., ICASSP ‘18
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Wy = Wy = Ws ..

Ref: InterfaceGAN, Shen et al.. CVPR 20



1. Data Generation & Labeling

2. Boundary Training 3. Attribute Editing
-] Latent Codes W Latent Space Sgurce mago
(z€ 2) A
StyleGAN N
Generator (G) Positive (+)
Source Code
\ Mapping ) g __Q‘fs_ciurce)
Network (M) ‘ ; B SN -. ... £ Wi ittt = Waomses e
Intermediate R YR st Directign e ——
LT T T T[] Latent Codes LN LY (n) Wedited P€--""""
(wew) Strength (a)
StyleGAN
tat Generator (G)
Attribute E;%zré Negative (_) : ,| Linear
Al | | Classifier (+/-) ® Positive (+) Separating | SVM
: ™ ® Negative (-) Hyperplane
qW Vg 1’ n| (e.g. “Smiling?) o
- ¥ BN 2. Boundary Training
Synthetic Images z: Input Latent
w: Intermediate Latent
1. Data Generation & Labeling

n: Normal Vector
(Attribute Direction)

Edited Image
a: Editing Strength

3. Attribute Editing




N 4 1 4

User Input StyleCLIP Optimization Loop Final Result
: Text Embedding (t
Text Prompt: W CLIP Toxt g (t)
a person with > Encodar
2 moha@ Generated Image
(G(w)) Edited Image

Latent Code (w)

StyleGAN

L Generator (G)
\\
CLIP
» |Image > <
Initial Image Encoder Initial Image Generated Image
A Embedding (ism;) | | Embedding (igen)
o \ 4
CLIP Loss s —
It] - | igen' Optimizer
Update w to minimize loss 101]~ Tl _(e.g., Adam)

:w: Latent Code t: Text Embedding i: Image Embedding G: StyleGAN Generator‘




GAN Inversion Is necessary for Image Editing

v

Eyeglasses Gender Pose Smile

Wi = Wy = Ws ..

Edit a real image?

Corresponding Latent code must be known!

12
Ref: InterfaceGAN, Shen et al.. CVPR 20



GAN Inversion

Target Image

Target Image

Target Image

GAN Inversion

Optimization-based Encoder-based

13  <+====Dbackprop
Ref: GAN Inversion Survey, Xia et al.’21; Image2StyleGAN, Abdal et al. ICCV'19; e4e, Tov et al. SIGGRAPH 2020



GAN Inversion: Most Techniques Fail on out-of-domain Images

GAN Inversion with Previous Methods

33

BDInvert

Ref: ReStyle, Alauf et al., ICCV 21
BDInvert,Kang et al., ICCV 21
Ensemble, Cai et al., CVPR 21

14



Key Challenge in Inverting a Frozen GAN

GAN Image Space

Generator is Fixed, Latent is Flexible

Inverted Image

Out of Domain
Target Image

15
Near-perfect GAN Inversion, Q. Feng, V. Shah et al.,'22; Make It So, A. Bhattad, V. Shah et al., 23



Key Challenge in Inverting a Frozen GAN

GAN Image Space

Proposed Idea:

e
N\

Out of Domain Inverted Image

Target Image

Generator is Flexible, Latent is Fixed

16
Near-perfect GAN Inversion, Q. Feng, V. Shah et al.,'22; Make It So, A. Bhattad, V. Shah et al., 23



Our Method Achieves Near-perfect GAN Inversion

GAN Inversion with Previous Methods Ours

Ref: ReStyle, Alauf et al., ICCV 21
BDInvert, Kang et al., ICCV 21
Ensemble, Cai et al., CVPR 21

17



Most off-the-shelf Editing methods work!

Lipstick >

using StyleSpace Editing Directions

18
Ref: StyleSpace, CVPR 2021



One-shot Image Stylization

19

Style Reference

Input Image

Stylized Image

Stylizing an Input Image in the style of a Reference Style using only one example




Pre-trained GAN for one-shot Stylization

StyleGAN2
trained on faces G

Input Image Stylized Image

GAN 73
Inversion

=— W— G' —

20 .
Fine-tuned StyleGAN2 JoJoGAN, Chong et al. ECCV '22



How to perform global customization of StyleGAN2?

GAN Image Space

Global Customization

Shifted Image Space

Step 1: GAN Inversion

Style Reference Inversion Result

GAN

Inversion

21
Ref: GAN Inversion Survey, Xia et al.’21; e4e, Tov et al. SIGGRAPH 2020



JoJoGAN: Style-mixing

Step 2. Use Style-mixing property to Create a Training Set

Inversion result

_ Rows responsible
for identity

Rows responsible
for stylistic features

22 S or Wspace

Ref: StyleGAN, Karras et al. CVPR ’19; StyleGAN2, Karras et al. CVPR 20



How to Fine-tune StyleGAN2 ? : JoJoGAN

Fine-tune G using pixel-level losses

| ‘ .
Wit G =P <4 ) — Loss «
. -
Wy G 2 AR 5 | 0ss «
! > Inference on fine-tuned G

Input Image Stylization
JB
¥ GAN ‘ : * , D B
i . w  — ;7

Ref: JoJoGAN, Chong et al. ECCV 22

fit to

24



JOJOGAN: Results

References

25



GANSs: Limitations and Challenges

Tricky to train due to two-player dynamics
Limitations

Thus, difficult to scale
¢ Mode collapse

Mostly limited to single domain datasets Generating OOD

» Exceptions: StyleGAN-XL, GigaGAN %H d
* Hard to train

Mode Collapse is common, limited quality

Are GANSs still relevant?! : current and future trends

GANs don’t use “direct supervision”

 The loss relies on the indirect “real / fake” signal coming from Discriminator

Challenges

28 stability

Efficiency
Quality

@/O Novelty


https://github.com/cmu-dgm/cmu-dgm.github.io/blob/refs/heads/main/assets/lectures/GANs2025.pdf

Important GAN concepts

The idea of two player game and minimax objective

Standard objective minimizes JS divergence, but other divergences could potentially be more effective

* E.g. Wasserstein Distance (aka Earth Mover’s Distance)
Scaling the model architecture is important

Adaptive Instance Normalization introduced by StyleGAN is super-important -- StyleGAN architecture is the

cornerstone of “image editing with GAN” literature
The main advantage of GAN is smooth latent space with intuitive behavior

Editing a real image requires GAN Inversion; once the inverted latent code is obtained, thousands of latent

space traversal techniques are available
GANSs require the dataset to be aligned/single domain

GANs are difficult to scale with respect to data due to unstable training dynamics



Lecture 3: Diffusion Models
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; —{ Decoder

Eaussian
DIStribbUtion

Slide from Jia-Bin Huang



Dataset: {x', %%, .., x"} ~ Dy (%)

Gaussian *
Distribution Dﬁ@tﬁﬂﬂ@mi@@g




Dataset: {x', %%, .., x"} ~ Dy (%)

Eaussian
DIStribbUtion

Slide from Jia-Bin Huang



Dataset: {x', %%, .., x"} ~ Dy (%)

Maximum Likelihood f* = argmax | | Do (Xi)

Eaussian
DIStribbUtion

Slide from Jia-Bin Huang



Dataset:{ , X2 .., }~ (x)

m
Maximum Likelihood 0* = drgmax | | ( )
=1

——{ Decider }— (%)

Slide from Jia-Bin Huang

Eaussian
DIStribbUtion




Dataset:{ , X2 .., }~ (x)

m
Maximum Likelihood 0" = drgmax | | ( )
=1

——{ Decider }— (%)

Slide from Jia-Bin Huang

Eaussian
DIStribbUtion




Dataset:{ , X2 .., }~ (x)

m
Maximum Likelihood 0" = dargmax IOg (1_[ ( )>
1=1

——{ Decoder }— (%)

Slide from Jia-Bin Huang

Eaussian
DIStribbUtion




Dataset:{ , X2 .., }~ (x)

m
Maximum Likelihood 0" = drgmax E lOg ( )
=1

——{ Decoder }— (%)

Slide from Jia-Bin Huang

Eaussian
DIStribbUtion




Dataset:{ , X2 .., }~ (x)

Maximum Likelihood 6 ~ argmax

o ll0g Po (%) ]

——{ Decoder }— (%)

Slide from Jia-Bin Huang

Eaussian
DIStribbUtion




Dataset:{ , X2 .., }~ (x)

Maximum Likelihood ~ §* ~ grgmax j (x) log v, (x)dx

— J (x) log (x)dx

——{ Decider }— (%)

Slide from Jia-Bin Huang

Eaussian
DIStribbUtion




Dataset:{ , X2 .., }~ (x)

X
Maximum Likelihood 6 ~ argmaxj (X) lOg ( ) dx

()

——{ Decider }— (%)

Slide from Jia-Bin Huang

Eaussian
DIStribbUtion




Dataset:{ , X2 .., }~ (x)

argmin j (x) log ()g() dx

Maximum Likelihood @7

2

argmin Dy, (Paacallpe)

——{ Decider }— (%)

Slide from Jia-Bin Huang

Eaussian
DIStribbUtion




2

Maximum Likelihood 6*

: j (X) ( f“* ))
argmin (x) log dx

(%)
= argmin D, ( [196)
e
v,
—{ Decoder }— (x) (%)
Gaussiamn
DIStributEion

Slide from Jia-Bin Huang



log p(X) — logf p(X, Z) dz @9 |ntegrating out all latent variables z ﬁ

p(Xx,2)
p(z|x)

-

% Assuming we know latent encoder p(z|x)

X)

log p(x) = log

- _{ Decgder J_ .

Slide from Jia-Bin Huang



log

log fq(z\x) dz
g(z|x)~— Encoder
_: Decoder
Z - 6 J

— X

—DPp (X|Z)

(%)

Slide from Jia-Bin Huang



log p(x) = log p(x) f q(z|x) dz

Slide from Jia-Bin Huang



log p(x) = f 4(z%) log p(x) dz

Slide from Jia-Bin Huang



log p(x) = E (4 x[log p(x)]

Slide from Jia-Bin Huang



log p(x) =

b q(z]x)

log

p(X,z)

p(z|x)

Slide from Jia-Bin Huang



log p(x) =

b q(z]x)

p(x,z) q(z

X)

p(z|x) q(z

Slide from Jia-Bin Huang



log p(x) =

“q(z]%) | 1O

p(x,z) q(z

X)

5 q(z|x) p(z

Slide from Jia-Bin Huang



log p(x) =

p(X,z)

q(z|x)

q(z

p(z

Slide from Jia-Bin Huang



log p(x) =

p(X,z)

q(z|x)

DKL( q(z|x) HP(Z\X))

Slide from Jia-Bin Huang



log p(x) =

p(X,z)

q(z|x)

[DKL( q(z|x) HP(Z\X))]

=0

Slide from Jia-Bin Huang



p(X,Z)
q(z|x)

log p(x) = *q(z|x)llog

Slide from Jia-Bin Huang



log

Evidence

b q(z]x)

Evidenc_e Lower Bound

log

q(z[x)

Slide from Jia-Bin Huang



log

Evidence

b q(z]x)

log

p(x,z)

q(z[x)

Evidence Lower Bound (ELBO)

Slide from Jia-Bin Huang



log =

Evidence

Qe (Z]X)—

b q(z]x)

log

q(z[x)

Evidence Lower Bound (ELBO)

4 )
Encoder

¢

J

p
Decoder

v

-

\

— X

—DPp (X|Z)

Slide from Jia-Bin Huang



Eq,(zix) [108

TN

PEDL (EBo)

log > E,x log

T q(z|x)
p(x, z) _E o pe(x | 2)p(2)
b A R NCIE)
3 - : p(z)
= Eqyzivlogpe(x | 2)] + Eg, (z1x) [l0g 102 | D)

= Eq, (20 [log pe(x | 2)] — Dk1(q4(2 | x) Il p(2))

N _ N—

Reconstrtjction term Regularization term
1 k—1
lx —2ll, = llx =DE(EN@)Il, ~3). (0+k}—1-loga)
j=0

Slide from Jia-Bin Huang



Variational Autoencoder (VAE)

sample sample

Enc;)bder 1o(ZX)  Z Decgder e (X|Z)

&>

Diffusion models

Encoding Encoding Encoding Decoding 6 Decoding 6




Variational Autoencoder (VAE) €

sample sample

X'L Enc;)bder 4o (z]X) Z'L Decgder J_pg(x‘z) 2
Observed X . _
: ]
Latent Z Miaximize Q(le)l o5 q(z|x) _

Diffusion models

[ Encoding ] [ Encoding ] [ Encoding ] [ Decoding@] [ DecodingH] ~

XO—Xl—XZ e e —XT—XT—l o e — XO

Observed X0 Maximize *q(xl:lexo)llOg
Latent X4, ..., XT

q(X;: XT‘XO)_

Slide from Jia-Bin Huang



[ Encoding ] [ Encoding ] [ Encoding ] [ DecodingH]

X0 " X1 "X T X7 7 X711

Observed X, Maximize L&,y .x,|x,)
Latent X4, ..., XT

[ Decoding 6 ] ~
—  Xp

q(X;: XT‘XO)_

Slide from Jia-Bin Huang



[ Encoding ] [ Encoding ] [ Encoding ] [Decoding@] [ DecodingH]
X0 " X1 "Xp T X X710 T Xg

Maximize E ;(x, . x,[x,)[108

Slide from Jia-Bin Huang



[ Encoding ] [ Encoding ] [ Encoding ] [Decoding@] [ DecodingH]
X0 " X1 "Xp T X X710 T Xg

Maximize E ;(x, . x,[x,)[108

Slide from Jia-Bin Huang



[ Encoding ] [ Encoding ] [ Encoding ] [Decoding@] [ DecodingH] %

X0 " X1 "Xp T X7 X171 — X

Maximize [ Q(Xl:XTlxo)llog

q(Xy: XT‘XO)— HCI(Xt|Xt 1)

Encoding

qXe|Xe_1) = N (X JaeXe—1, (1 — ap)l)

Encoding Mean ~ Variance
Slide from Jia-Bin Huang




[ Encoding ] [ Encoding ] [ Encoding ] [ Decoding 6 ] [ Decoding 6 ] ‘/\J.w*\ }

XO—>X1—>X2 ...—»XT—>XT_1 coeo I Xb

q(Xq: XTle)_ 5 q(X1: XT |X0)

—Dg1(q(X7[X)|[p(X7)) Prior matching

B (x1]%0) [log Po (Xo ‘Xl)] Reconstruction

T

Denoising

B z g (xelxo) [IDKL(G (Xe—1[X¢, X0) || Do (Xt—llxt))]matching
t=2

Slide from Jia-Bin Huang



[ Encoding ] [ Encoding ] [ Encoding ] [ Decoding 6 ] [ Decoding 6 ] s%}

Xo— " Xi— Xy —Xr— X1 =+ — Xpy
4 -log p(Xo: XT)
q(X1:X7|X0) _ CI(Xl: XT ‘Xo)_
—Dx(q(x71%)|[p(Xr)) | Prior matching
[*q(X1IXo) [log Do (xo\xl)] ] Reconstruction
T
Denoisin
B z g (xelxo) [IDKL(G (Xe—1[X¢, X0) || Do (Xt—llxt))]matchingg
t=2

Slide from Jia-Bin Huang



/
/

[ Encoding ] [ Encoding ] [ Encoding ] [ Decoding 6 ] [ Decoding 6 ] % _‘"‘:}

|

XO X]_ X2 *ee ’ XT — XT—l oo —_— X()
T
1 2
z ateelxo)l gz L - 12]]
t=2 q

Slide from Jia-Bin Huang



Encoding Encoding Encoding Decoding 6 Decoding 6
XO—Xl—XZ [ I B ] —XT—XT_l o 00 —

T

S (x¢|X0) ZO'?I(t) ”HH (X¢, t)— Hqg (X¢, Xp) ||%

H
Il
N

q(X¢|Xo)

Xt=1/a_tX0+ 1_a_t€

Slide from Jia-Bin Huang



[ Encoding ] [ Encoding ] [ Encoding ] [DecodingH] [Decoding@]
XO_>X1_>X2 ceoo0 —XT—XT—l cooe —

T

“aGelxo)l 262 (1) [l 1 (x¢, ) = g (Xt X0) 112 ]

H
Il
N

- 11 (¢, )] Ly e 1g (X6, %)

q(X¢|Xo)

Xt=1/a_tX0+ 1_a_t€

Slide from Jia-Bin Huang



[ Encoding ] [ Encoding ] [ Encoding ] [ Decoding 6 ] [ Decoding 6 ]
XO_>X1_>X2 ceoo0 —XT—XT—l cooe —

T

4C](XHXO)[ ZO'?I(t) [ ”,ng(Xt, t)_ .uq(xt'XO) ”% ] ]

H
Il
N

— Up (Xt, t) Hq (Xt; XO)

q(X¢|Xo)

Xt=1/a_tX0+ 1_a_t€

X0
Slide from Jia-Bin Huang



[ Encoding ] [ Encoding ] [ Encoding ] [Decodinge] [Decoding@]
XO_>X1_>X2 ceoo0 —XT—XT—l cooe —

T

4C](XHXO)[ Zo.?l(t) [ ”:LLH(XD t)_ :uq(xt'XO) ”% ] ]

H
Il
N

Vae (1 —ap ) Var-1(1—ap) .

— Xt + —
1—at t 1_at 0

:uq (Xt) XO) —

—
H = g (X, t) Uq (X¢,Xo)

U-Net

q(X¢|Xo)

Xt=1/a_tX0+ 1_a_t€

Slide from Jia-Bin Huang



[ Encoding ] [ Encoding ] [ Encoding ] [ Decoding 6 ] [ Decoding 6 ]

XO—Xl—XZ e e —XT—XT—l e —

T
: (111 (x¢, ) = g (Xe, X0) 117 ]
L q(xt|x0)[ Zo.?l(t) MH( t ) q\*t» 0 2 ]
1—Ta;_ JVar—1(1—
Ug (Xt»XO)_ \/“_t(l_a_cit 1)Xt+ “t11£a_t “t)xo
to(X¢, t) = \/a_t(ll__a—at_l) Xy + atilfla__ “ Ro(X¢, t)
t t

Encoding ]_:.; — H —> M@ (Xt' t) ‘qu (Xt’ XO)
q(X¢[Xo)

X, = J@xo + /1 — e X U-Net

Slide from Jia-Bin Huang



[ Encoding ] [ Encoding ] [ Encoding ] [ Decoding 6 ] [ Decoding 6 ]

XO—Xl—XZ e e —XT—XT—l e —

T
: (111 (x¢, ) = g (Xe, X0) 117 ]
L q(xt|x0)[ Zo.?l(t) MH( t ) q\*t» 0 2 ]
1—Ta;_ JVar—1(1—
Ug (Xt»XO)_ \/“_t(l_a_cit 1)Xt+ “t11£a_t “t)xo
to(X¢, t) = \/a_t(ll__a—at_l) Xy + atilfla__ “ Ro(X¢, t)
t t

Encoding ]_:.; — H —> M@ (Xt' t) ‘qu (Xt’ XO)
q(X¢[Xo)

X, = J@xo + /1 — e X U-Net

Slide from Jia-Bin Huang



[ Encoding ]

[ Encoding ]

[ Encoding ]

)(()----»-)(kl----»-)(;Z soe ----»:)(kr,----4»:x{7n__:1 coe

T

H
Il

N

Slide from Jia-Bin Huang

[ Decoding 6 ]

[ Decoding 6 ]

q(X¢|Xo)
X, = J@xo + /1 — e

*q(xt|x0)[ w) [l 20,00 — %o [15]]
_ Var (1 — “t—1) \/ ar_1(1— “t)
:uq (Xt) XO) 1-a, 1-a
o ) = T, 00,
ol
i oy | RN g MR
U-Net



[ Encoding ] [ Encoding ] [ Encoding ] [Decodinge]

[ Decoding 6 ]

XO—Xl—XZ cooeo —XT—XT—l cooe —
T
. 2
ool w® [l %50,0 = % 113]]
t=2
_VEA T T - ay)
Hg (X, Xo) e
a;(1—a;_71) a1 (1 —ag)
o (xe, £) = VLT, (VOB

| —| 1
s {(Ercodine — — @ | P o0
CI(Xt |XO) —
X, = J@xo + /1 — e U-Net

Slide from Jia-Bin Huang




[ Encoding ] [ Encoding ] [ Encoding ] [Decodinge] [Decoding@]
XO_>X1_>X2 ceoo0 —XT—XT—l cooe —

T

*q(xt|x0)[ w(t) | ||.U9(Xt» t)— ﬂq(xt: Xo) ||% | ]

H
Il
N

Vae (1 —ap ) Var-1(1—ap)

— X; + —
1_at t 1_at

Hqg (Xt»Xo) — X

[ 1]
0|r
—

U-Net

q(X¢|Xo)

Xt=1/a_tX0+ 1_a_t€

X0
Slide from Jia-Bin Huang



[ Encoding ] [ Encoding ] [ Encoding ] [Decodinge] [Decoding@]
XO_>X1_>X2 ceoo0 —XT—XT—l cooe —

T

oy L W@ Dl g G, )= 1 (0, %0) 12

H
Il
N

Vae (1 —ap ) Var-1(1—ap)

— X; + —
1_at t 1_at

Hqg (Xt»Xo) — X

[ 1]
0|r
—

U-Net

q(X¢|Xo)

Xt=1/a_tX0+ 1_a_t€

Slide from Jia-Bin Huang



[ Encoding ] [ Encoding ]

[ Encoding ] [ Decoding 6 ] [ Decoding 6 ]

XO |X1_>X2 ®oo o0 —XT—XT—l o0 —

T

2

i xo) L W) L e O, )= 1g (20, %0) |12
t=2

_ Vo (l—a ) Va1 (1 —ag)
l’lCI(XtIXO) 1_a_t Xt+ 1—a_t X0
VX = X¢ — 4J1—a€

q(X¢|Xo)

Xt=1/a_tX0+ 1_a_t€

Slide from Jia-Bin Huang
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[ Encoding ] [ Encoding ] [ Encoding ] [Decodinge] [Decoding@]
XO_>X1_>X2 ceoo0 —XT—XT—l cooe —

T

oy L W@ Dl g G, )= 1 (0, %0) 12

t=2
(X X )_ \/Of_t(l—“t—ﬂx +\/“t—1(1—“t)x
l’lq t) >0 1_a—t L 1_a—t 0
Xy — /1 — Q€
XO —
ac

[ 1]
0|r
—

U-Net

q(X¢|Xo)

Xt=1/a_tX0+ 1_a_t€

Slide from Jia-Bin Huang



[ Encoding ] [ Encoding ] [ Encoding ] [ Decoding 6 ] [ Decoding 6 ]
XO_>X1_>X2 ceoo0 —XT—XT—l cooe —

T

*q(xt|x0)[ w(t) [ pg (e, )= g (4, %0) 115 ] ]

H
Il
N

q(X¢|Xo)

Xt=1/a_tX0+ 1_a_t€

X0
Slide from Jia-Bin Huang



[ Encoding ] [ Encoding ] [ Encoding ] [Decodinge] [Decoding@]
XO_>X1_>X2 ceoo0 —XT—XT—l cooe —

T

E e xo) L W@ [l O )= 1y G xo) 1121]

1

q(X¢|Xo)
X( X, = J@xo + /1 — e

Slide from Jia-Bin Huang
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Please fill in the Feedback Form at:

https.//virajshah.com/sc395-feedback3

Thank You!

152



