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Variational Autoencoder (VAE)

sample sample
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Denoising diffusion probabilistic models (DDPMs)

Denoising Diffusion Probabilistic Models

Jonathan Ho Ajay Jain Pieter Abbeel
UC Berkeley UC Berkeley UC Berkeley
jonathanho@berkeley.edu ajayj@berkeley.edu pabbeel@cs.berkeley.edu

Abstract

We present high quality image synthesis results using diffusion probabilistic models,
a class of latent variable models inspired by considerations from nonequilibrium
thermodynamics. Our best results are obtained by training on a weighted variational
bound designed according to a novel connection between diffusion probabilistic
models and denoising score matching with Langevin dynamics, and our models nat-
urally admit a progressive lossy decompression scheme that can be interpreted as a
generalization of autoregressive decoding. On the unconditional CIFAR10 dataset,
we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On
256x256 LSUN, we obtain sample quality similar to ProgressiveGAN. Our imple-
mentation is available at https://github.com/hojonathanho/diffusion.

J. Ho et al. Denoising diffusion probabilistic models. NeurlPS 2020
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Figure 1: Generated samples on CelebA-HQ 256 x 256 (left) and unconditional CIFAR10 (right)


https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

DDPMs: Basic idea
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J. Ho et al. Denoising diffusion probabilistic models. NeurlPS 2020
Blog introduction: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
CVPR 2022 tutorial



https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://cvpr2022-tutorial-diffusion-models.github.io/

DDPMs: Basic idea
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* Forward process g turns images into Gaussian noise
* Reverse process p turns noise into images

* Provided the increments of ¢ are small enough, pg (x;_1|x;) Is

Gaussian and we can train a neural network to estimate the
mean of x;_, given x;

J. Ho et al. Denoising diffusion probabilistic models. NeurlPS 2020



https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

DDPMs: Basic idea
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Algorithm 1 Training
* €g(x;, t) is the predicted noise component of
1: repeat image x, given noise level t
2: x0 ~ q(xo) * Network parameters 6 are updated to
3: t ~ Uniform({1,...,T}) reduce L2 error between actual noise ¢ and
4: €~ N(0,I) predicted noise €g (x;, t)
5: Take gradient descent step on
2
Vo ||e—ee( Xt ,t)||

6: until converged

J. Ho et al. Denoising diffusion probabilistic models. NeurlPS 2020



https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

DDPMs: Basic idea

Algorithm 1 Training Algorithm 2 Sampling
1 repeat 1: xr ~ N(0,1)
2: %o ~ q(%0) 2: fort ="T,...,1do
A tN‘j{p(l(f)Olif;l({la---aT}) 30 z~N(0,I)ift > 1,elsez=0
. €~ : B
5: Take gradient descent step on 4 Xp-1 = \/L—t (xt - \H—ft—ee (xtat)) + 0tz
Vo ||e — €0 (v arxo + V1 — Qe t)||2 5: end for
6: until converged 6: return xo

J. Ho et al. Denoising diffusion probabilistic models. NeurlPS 2020



https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

How do we do this in practice?

» Step 1: Sample image from the
dataset, generate noisy image
using forward process

» Step 2: Given noisy image,
generate slightly noisier image

Xt Xt+1

https://www.eecs.umich.edu/courses/eecs442-ahowens/fa23/slides/lec11-diffusion.pdf



https://www.eecs.umich.edu/courses/eecs442-ahowens/fa23/slides/lec11-diffusion.pdf

How do we do this in practice?

During Training During Inference

Input Output

xt+1 xt

U-net predicts the noise

Loss: MSE(x;, X;)

https://www.eecs.umich.edu/courses/eecs442-ahowens/fa23/slides/lec11-diffusion.pdf



https://www.eecs.umich.edu/courses/eecs442-ahowens/fa23/slides/lec11-diffusion.pdf

Class-conditioned DDPMs

* “We can sample with as few as 25 forward passes while maintaining FIDs comparable to BigGAN”

Figure 1: Selected samples from our best ImageNet 512x512 model (FID 3.85)

Abstract

We show that diffusion models can achieve image sample quality superior to the
current state-of-the-art generative models. We achieve this on unconditional im-
age synthesis by finding a better architecture through a series of ablations. For
conditional image synthesis, we further improve sample quality with classifier guid-
ance: a simple, compute-efficient method for trading off diversity for fidelity using
gradients from a classifier. We achieve an FID of 2.97 on ImageNet 128 x 128,
4.59 on ImageNet 256x256, and 7.72 on ImageNet 512x512, and we match
BigGAN-deep even with as few as 25 forward passes per sample, all while main-
taining better coverage of the distribution. Finally, we find that classifier guidance
combines well with upsampling diffusion models, further improving FID to 3.94
on ImageNet 256 X256 and 3.85 on ImageNet 512x512. We release our code at
https://github.com/openai/guided-diffusion.

P. Dhariwal and A. Nichol. Diffusion Models Beat GANs on Image Synthesis. NeurlPS 2021



https://arxiv.org/pdf/2105.05233.pdf
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Unconditional generation
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Conditional generation
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Conditional generation

Conditional signal

y = ‘CAT’

p(Xr) po(Xo)
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Conditional generation

Conditional signal

y = “A cat wearing sunglasses”
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Unconditional generation
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Conditional generation (%)
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Conditional generation ()
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Conditional generation (%)
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Conditional generation
Classifier Guidance

X O
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(%)
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Conditional generation
Classifier Guidance

X O
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Conditional generation (@)

. m.f > /

Classifier Guidance
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Conditional score

Vlogp, (X¢|y)= [V log P(Xt)]+ Y Vlog p(y[x¢)

Conditional score Unconditional score Adversarial gradient

(%)
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Conditional generation (@)
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Classifier Guidance
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Conditional generation )

Classifier Guidance

Classifier guidance scale =1 Classifier guidance scale = 10

y = “Pembroke Welsh corgi”

Slide from Jia-Bin Huang [Dhariwal & Nichol 2021]



Conditional generation (@)
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Classifier Guidance

X O
SH(XtJ t' .V) ~V lOg p(xtly)
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Vlogp, (X¢|y)= [V log P(Xt)]+ Y Vlog p(y[x¢)
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Conditional generation

Classifier Guidanc:.e

Vlog py (xe|y)=|Vlog p(x )}+|y Viog p(y|x,))

Conditional score Unconditional score Adversarial gradient

Classifier

— p(J|X¢)

Trained classifier

Pdata (X)

Slide from Jia-Bin Huang



Slide from Jia-Bin Huang

Conditional generation

Classifier Guidance

Vlogp, (X:|y)= [V log p(Xt)]+ y Vlog p(¥[Xo)

Conditional score Unconditional score

A w *
Xt_\/l_a_tee(xtrt) ¢ ¢ ‘

Adversarial gradient

— — [Classifie] — p(¥]Xp)
X0
Estimated Off-the-shelf
clean image classifier
— @O(Xti t)
Estimated noise
U-Net Universal Guidance [Bansal et al. 2023]



Conditional generation (@)
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Classifier Guidance

Vlogp, (X:|y)= [V log p(Xt)]+ y Vlog p(y|x;)

Conditional score Unconditional score Adversarial gradient

(%)

Slide from Jia-Bin Huang



Conditional generation

Xt O Vlogp, (X¢|y) = Vlog p(x;) + v Vlog p(y|x¢)

Conditional score Unconditional score Adversarial gradient
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Conditional generation

Xt O Vlogp, (X¢|y) = Vlog p(x;) + v Vlog p(y|x¢)

Conditional score Unconditional score Adversarial gradient

Vlog p(y|x¢) = Vleg p(X¢|y) — Vlog p(x¢)
+Vlogp(y)

(%)
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Conditional generation

Xt O Vlogp, (X¢|y) = Vlog p(x;) + v Vlog p(y|x¢)
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Conditional generation

X: O Vlogp, (X¢|y) = Vlog p(x;)+ ¥

Conditional score Unconditional score Adversarial gradient
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Conditional generation

XtO  Viog py(X¢|y) = Vlog p(X) + ¥(Vlog p(X¢|y)—Vlog p(x;))

Conditional score Unconditional score Adversarial gradient

(%)
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Conditional generation £
Classifier-free Guidance

[V logp, (x¢ |3’)] :[(1 —y) Vlog p(Xt)] +[)/ Vlog p(X,|V) ]
Conditional score Unconditional score Conditional score

0
.

— SO (Xt) t; ®)

v

Estimated score

U-Net
y
( H — SB(Xt' t! y)
X) .
Estimated score
Pdata
U-Net Slide from Jia-Bin Huang



Conditional generation

Unguided samples Guided samples

Slide from Jia-Bin Huang [Ho and Salimans 2021]
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Classifier guidance

* We can sample from the class-conditional density g(x;|c) with the help of
a pre-trained classifier P(c|x;)

« Bayes rule:
*q(x¢|c) o< P(clxe)q(xe)

‘log q(x¢|c) = log P(c|x;) + log q(x;) + const.

conditional score function obtained from classifier unconditional score
output function (pre-trained)

 To sample from class ¢, steer sample in the modified direction
Vy [logq(x;) +wlog P(cl|x.)]



Classifier-free guidance

« Instead of training an additional classifier, get an “implicit classifier” by jointly

training a conditional and unconditional diffusion model: P(c|x;) o« q(x:|c)/q(x;)

 Both q(x;|c) and q(x;) are represented using the same network, trained by
dropping out ¢ with some probability

(corresponding to the unconditional case)

« The modified score function corresponding to this implicit classifier is

Ve llogq(xy) + wlog P(clx)]l = Vy, [logq(x;) + w(log q(x;|c) —logq(x;))]
Sample is steered away from the unconditional
distribution in the direction of the conditional one

J. Ho and T. Salimans. Classifier-Free Diffusion Guidance. arXlv 2021



https://arxiv.org/pdf/2207.12598.pdf

Classifier-free guidance
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Figure 1: Classifier-free guidance on the malamute class for a 64x64 ImageNet diffusion model. Left
to right: increasing amounts of classifier-free guidance, starting from non-guided samples on the left.

J. Ho and T. Salimans. Classifier-Free Diffusion Guidance. arXlv 2021



https://arxiv.org/pdf/2207.12598.pdf

DDPMs: Implementation

* U-Net architectures are typically used to represent €y (x;, t)
 Bells and whistles: residual blocks, self-attention

W t 1" J
Time Representation

Fully-connected
Layers

[T e ey

|
I
|
|
|
|
=

* Time is encoded using sinusoidal positional embeddings or random Fourier features, fed into the U-Net using
addition or adaptive normalization

Source: CVPR 2002 DM tutorial



https://cvpr2022-tutorial-diffusion-models.github.io/

Attention Module

— softmax( Vi dim = — 1)
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Text-guided diffusion
* |nstead of a class label, c can be an encoded text prompt,
Injected into the U-Net using cross-attention

i €9(X;,C 1)

[ s P gy )

Conditioning information:
text c, time t

Slide from H32E#S NG


https://arxiv.org/pdf/2208.01626.pdf

Text-guided diffusion

Instead of a class label, c can be an encoded text prompt,
Injected into the U-Net using cross-attention

Classifier-free guidance works the same way as before, by
training both conditional and unconditional models using text
dropout

CLIP guidance: steer samples in the direction of V, CLIP(x, ¢)

Note: both classifier and CLIP must be noise-aware (trained on
noised images)



Cross Attention Module
Image  —— |k K |8|8|&]|&]|%

ol - softmax( v ,dim = — 1)
d

}

@+l
'

I Dense Layer I» Output: Y € RNXd;,

Text —

HHHHHHE

Q comes from Text; K, V comes from Image




CLIP

(1) Contrastive pre-training

Pepper the Text

aussie pup —> ;
oy Encoder |
C d \ 4 \ 4 ) 4 \ 4
" Ty T, T3 ™
—> l] ll T] llT2 ll T ll'TN
> l7 | Tl lz'Tz lz'T; lz'TN
Image
—_ 1 Iy T Iy T I T I3 Ty
Encoder 3 370 | 1371y | 13713 3'IN
—» IN INTy | INTy | INT3 INTN

Contrastive objective: in a batch of N
image-text pairs, classify each text
string to the correct image and vice
Versa

A. Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021

https://openai.com/blog/clip/



https://arxiv.org/pdf/2103.00020.pdf
https://openai.com/blog/clip/

Text-guided diffusion
* |nstead of a class label, c can be an encoded text prompt,
Injected into the U-Net using cross-attention

Image source



https://arxiv.org/pdf/2208.01626.pdf

DALL-E 2

vibrant portrait painting of Salvador Dali with a robotic half face a shiba inu wearing a beret and black turtleneck

an espresso machine that makes coffee from human souls, artstation panda mad scientist mixing sparkling chemicals, artstation a corgi's head depicted as an explosion of a nebula

A. Ramesh et al. Hierarchical text-conditional image generation with CLIP latents. Preprint 2022



https://cdn.openai.com/papers/dall-e-2.pdf

DALL-E 2

CLIP text
encoding

"a corqi
playing a
flame
throwing
trumpet”

Generative model to

produce CLIP image

encoding given CLIP
text encoding

CLIP image
encoding
e y \)‘ N\ 0 O O
OO000 O O
O»()»
O O ) O
—10+0+O— MO O
O O
prior decoder

Diffusion model (GLIDE)
conditioned on CLIP image
embedding and text prompt

Generate at 64x64, upsample
to 256x256, then upsample to
1024x1024




DALL—E 2: Results

Figure 19: Random samples from unCLIP for prompt “A close up of a handpalm with leaves growing from Figure 18: Random samples from unCLIP for prompt “Vibrant portrait painting of Salvador Dali with a

it”

robotic half face”



DALL-E 2: Results

Figure 3: Variations of an input image by encoding with CLIP and then decoding with a diffusion model. The
variations preserve both semantic information like presence of a clock in the painting and the overlapping
strokes in the logo, as well as stylistic elements like the surrealism in the painting and the color gradients in
the logo, while varying the non-essential details.



DALL-E 2: Results

Figure 4: Variations between two images by interpolating their CLIP image embedding and then decoding
with a diffusion model. We fix the decoder seed across each row. The intermediate variations naturally blend
the content and style from both input images.



DALL-E 2: Limitations

Figure 15: Reconstructions from the decoder for difficult binding problems. We find that the reconstructions
mix up objects and attributes. In the first two examples, the model mixes up the color of two objects. In the
rightmost example, the model does not reliably reconstruct the relative size of two objects.




Google Imagen (not public)

\ - A B - =
[ imagen ) . [ imagen ] - o [imagen ]

Sprouts in the shape of text ‘Imagen’ coming out of a A photo of a Shiba Inu dog with a backpack riding a A high contrast portrait of a very happy fuzzy panda
fairytale book. bike. It is wearing sunglasses and a beach hat. dressed as a chef in a high end kitchen making dough.
There is a painting of flowers on the wall behind him.

Teddy bears swimming at the Olympics 400m Butter- A cute corgi lives in a house made out of sushi. A cute sloth holding a small treasure chest. A bright
fly event. golden glow is coming from the chest.

C. Saharia et al. Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding. NeurlPS 2022



https://imagen.research.google/paper.pdf

Google Imagen: Details
Text encoder is a large language model
(4.6B parameters) trained on text only i : \

Diffusion model to generate at 64x64, upsample
to 256x256,then 1024x1024

* Architecture: efficient U-Net (2B parameters): more |

chxl Embedding

parameters at lower resolutions, convolutions after l“xmmagc
downsampling and before upsampling Ly

» C(lassifier-free guidance with a dynamic thresholding
technique, enabling good generation quality with
high guidance weights

* Training dataset: 460M image-text pairs (internally v
collected),400M pairs from the LAION dataset Diffusion Model

l

1024 x 1024 Image

256 x 256 Image

Y

C. Saharia et al. Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding. NeurlPS 2022



https://imagen.research.google/paper.pdf
https://laion.ai/blog/laion-400-open-dataset/

Google Imagen: Evaluation

* |mpact of model size, implementation choices

~e— T5-Small

25 | == T-Large 25 |
o T5-XL
e T5-XXL

S 20 S 20
10 - 10
0.22 0.24 0.;‘26 0.28 024 025 026 027 0.28 0.29
CLIP Score CLIP Score
(a) Impact of encoder size. (b) Impact of U-Net size.

FID@ 10K

25

|

20

15

10

I

-| == static thresholding
~e— dynamic thresholding

0.26 0.27 0.28 0.29

CLIP Score

(c) Impact of thresholding.

Curves are obtained by varying guidance weight
FID evaluated on COCO dataset by sampling prompts and generating images using the same prompts




Google Imagen: Evaluation

e Human evaluation on DrawBench (set of 200 nromnts)

D Imagen D DALL-E 2 D Imagen D GLIDE D Imagen D VQGAN+CLIP D Imagen D Latent Diffusion

100%
= i -
e = T T b
50% |- 1 1 4 F -
+ =
2 g - s
1 zjz ==

0%

Alignment Fidelity Alignment Fidelity Alignment Fidelity Alignment Fidelity



Imagen vs. DALL-E 2

Imagen (Ours) DALL-E 2 [54]

F

“A yellow book and a red vase”



Imagen vs. DALL-E 2

Imagen (Ours) DALL-E 2 [54]

Imagen is better than DALL-E 2 in assigning the colors to the objects



Imagen vs. DALL-E 2

Imagen (Ours) DALL-E 2 [54]
romryrerrveey. N

Text to Image

Text to image

“A storefront with Text to Image written on it”



Imagen vs. DALL-E 2

Imagen (Ours) DALL-E 2 [54]

~»

“A panda making latte art”



Imagen vs. DALL-E 2

Imagen (Ours) DALL-E 2 [54]

“A horse riding an astronaut”



Challenge: Resolution



Denoising 6 Denoising 6

P
) JE&:""‘%

Prompt
Time t [ |

. Seg(X¢, t, V)

Estimated score

Noisy imageX¢
U-Net

Slide from Jia-Bin Huang



Cascade Diffusion Mod

Prompt 'Y
”)x(T—l) Oy x (T =1) (Ox (T -1
= = -
— — Sg (Xt; t, y) - 1 - 2
H Estimated score ¢SR ¢SR
L1 L1 L1
image U-Net U-Net U-Net

Text-to-image Diffusion Model SR Diffusion Model SR Diffusion Model

ALY oo g,
=< N <yl
i
: \ e -
g 'y ), [
. lv. » \
: | ~
a

| 256x256 1024x1024
[Ho et al. 2021] [Imagen: Saharia et al. 2022] Slide from Jia-Bin Huang



Latent Diffusion IVIod

E CEE T D

= Latent z
Encoder | Decoder

‘ Lreg \

Reconstruction X

[Rombach et al. 2022] [Vahdat et al. 2021] Slide from Jia-Bin Huang



Latent Diffusion IVIod

E N D

L= Latent z
Encoder Decoder

Reconstruction X

[ Denoising 6 ] [ Denoising 8 ] SEEE
ZT — ZT_1 e o0 — ZO

Slide from Jia-Bin Huang



Latent Diffusion IVIod

E CEE T D

L= Latent z
Encoder Decoder

Reconstruction X

—
[ Denoising 6 ] [ Denoising 0 ] RN D i
r r-1 0 Decoder X BN\

Séaaerpprr!?ia-Bin Huang



End-to-end Diffusion Mod ol

[ Denoising 6 ] [ Denoising 6 ]

Xtr— X711 — — Xp

Adjusted noise schedules =1 4 DX (T =1

[Chen et al. 2023] [Hoogeboom et al. 2023]

Estimated
score

64 x 64 256 x 256 1024 x 1024

1]
H > Sp(Xg, t)
—

Multi-scale loss z |
simple diffusion [Hoogeboom et al. 2023] LH (X) — ; LB (X)
S

Single-scale Multi-scale

..... psssaniog — g
Progressive training = o . — ‘
Matryoshka Diffusion Models [Gu et al. 2023]

Slide from Jia-Bin Huang



Latent diffusion model (basis of Stable Diffusion)

« Key idea: train a separate encoder and decoder to convert images
to and from a lower-dimensional latent space, run conditional
diffusion model in latent space

\\\
T}

.\'0 L~

1

[atent data

R. Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022

https://medium.com/@steinsfu/stable-diffusion-clearly-explained-ed008044e07e



https://medium.com/@steinsfu/stable-diffusion-clearly-explained-ed008044e07e
https://arxiv.org/pdf/2112.10752.pdf

Latent diffusion model (basis of Stable Diffusion)

« Key idea: train a separate encoder and decoder to convert images
to and from a lower-dimensional latent space, run conditional

Reverse Diffusion

Repeat 7 times

P =7-1
: EED UNet DZD
‘ Random
<— [\V Q latent
| noise
' 5 =T
[TT1T1

conditioning
embedding

https://medium.com/@steinsfu/stable-diffusion-clearly-explained-ed008044e07e



https://medium.com/@steinsfu/stable-diffusion-clearly-explained-ed008044e07e

Latent diffusion model (basis of Stable Diffusion)

Key idea: train a separate encoder and decoder to convert images
to and from a lower-dimensional latent space, run conditional

diffusion model in latent space

Close-up of U-Net: Conditioning information incorporated using cross-attention
\ i Conditioning

“—) E —Pb Forward Diffusion Process i I ‘ Semantic Map J
_ =0 £ Text

Repeat 7 times

Representations

"-‘,\\ t=1 r=1-1 t=T Ve
. UNet (&l [T UNet LI Images J
_ —

By -5 YH- s
Xo g AL -1 =y t 7 1_9 J

https://medium.com/@steinsfu/stable-diffusion-clearly-explained-ed008044e07e



https://medium.com/@steinsfu/stable-diffusion-clearly-explained-ed008044e07e

Latent diffusion model (basis of Stable Diffusion)

CelebAHQ FFHQ LSUN-Churches LSUN-Beds ImageNet

===, A

Text-to-Image Synthesis on LAION. 1.45B Model.

‘A street sign that reads ‘A zombie in the "An image of an animal ‘An illustration of a slightly "A painting of a 'A watercolor painting of a "A shirt with the inscription:

“Latent Diffusion” * style of Picasso’ half mouse half octopus’ conscious neural network' squirrel eating a burger’ chair that looks like an octopus’ “I love generative models!"” '




Challenge: Inference Speed



Denoising Diffusion Implicit Models (DDIMs)

* DDIM roughly sketches the final sample, then refine it with the reverse process

* Key idea:
« Given x, generate the rough sketch x, and refine pg(X¢—1|X¢ Xo)?

* Unlike original diffusion model, it is not a Markovian structure

9 Do
6@ =96 @08

g i (B;)J)) JI()) il))‘fl)l il)(;)

en

I(J'> J‘l)

Figure 1: Graphical models for diffusion (left) and non-Markovian (right) inference models.

Sangwoo Mo, Introduction to Diffusion Models



https://www.slideshare.net/sangwoomo7/introduction-to-diffusion-models

DDIM follows a deterministic process

DDPM follows stochastic process

DDPM

DDIM follows deterministic process

DDIM

T The same original noise xt to same image x,

Tidiane Ndir, presentation on Faster diffusion, Uni of Freiburg



https://www.youtube.com/watch?v=IVcl0bW3C70

[ Encoding ] [ Encoding ] [ Encoding ] [Decodinge]
XO—>X1—>X2 ...—»XT—>XT_1 coe
T

*CI(XtIXo)[ w(t) [lleg(x,t) — € ||%]]

H
Il
N

1—«a 20 (x0. £)
Xt — — €9\ X¢,
\/(1 — dp) g
]
-
CI(Xt|XO) —
X, = J@xo + /1 — e U-Net

Slide from Jia-Bin Huang



[ Encoding ] [ Encoding ] [ Encoding ] [Decodinge]
XO—>X1—>X2 ...—»XT—>XT_1 coe
T

*Q(XtIXo)[ w(t) [lleglx,,t) — € ||%]]

H
Il
N

R 5 1
. A4
Encoding ]—> —> 69 (Xt’ t) L2
CI(Xt|XO) —
X, = J@xo + /1 — e U-Net

Slide from Jia-Bin Huang



[ Encoding ] [ Encoding ] [ Encoding ] [Decodinge]
XO—>X1—>X2 ...—»XT—>XT_1 coe
T

*Q(XtIXo)[ w(t) [lleglx,,t) — € ||%]]

H
Il
N

R 5 1
. A4
Encoding ]—> —> 69 (Xt’ t) L2
CI(Xt|XO) —
X, = J@xo + /1 — e U-Net

Slide from Jia-Bin Huang
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[ Encoding ] [ Encoding ] [ Encoding ] [ Decoding 6 ] [ Decoding 6 ] % }

|

XO_’ X1_> X2 co —»XT — XT—l . oo E— X()
T
2
Z 4CI(Xt|XO)[ W(t) [” — ||2]]
£t=2

@Xt=\/a:tx0+\/1—a_te
@ = ClXt"b
©

Slide from Jia-Bin Huang DDIM [Song et al. 2021]

ax; + b



N\]-

(1) x, = Ja@x,

@
©,

Slide from Jia-Bin Huang

2 /
*CI(XtIXo)[ w(t) [l — 2 ] ]
— [ Encoding ] [ Encoding ] [ Encoding ]
+ 1 — 0+€ e —— e — oo o m—
\/ t X0 X1 X9 XT
— aXt T b
q(X¢|Xe—1)

= aX; + b No need to be a Markovian process!

DDIM [Song et al. 2021]



*CI(XtIXo)[ w(t) [l — 2 ] ]

I_\/Ja
N
4

ﬁ
Il
N

I [ Encoding ] ‘ [ Encoding ] [ Encoding ]
@Xt:\/atxo-l_\/l_ate XO—Xl—XZ "‘_’XT
@ — aXt T b
@ — aXt + b

Find @ and b such that x, = \Ja;x + /1 —age! o or =

DDIM [Song et al. 2021]

q(X¢|Xe-1,X0)
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Slide from Jia-Bin Huang DDIM [Song et al. 2021]



T
> Eginl w® [0 = ¢ IB]]

t=2 |

I [ Encoding ] ‘ [ Encoding ] [ Encoding ]

XO_>X1_>X2 eo o0 _>XT
Q(Xt‘xt—p XO)

q(X¢—1|X¢Xg) = N(.Uq (X¢,X0), Utzl)
p(X—1|X) = N (ug(X¢, Xo), 0£ 1)

DDIM [Song et al. 2021]
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> Eginl w® [0 = ¢ IB]]

t=2 |

I [ Encoding ] ‘ [ Encoding ] [ Encoding ]

XO_>X1_>X2 eo o0 _>XT
Q(Xt‘xt—ll XO)

Q(Xt—llxt'XO) — N(,qu (Xt'XO); O-tZI)
p(Xe—1]|Xe) = N (g (Xe, Xo), o/ 1)

,uq (Xt; XO) — \/ at_1XO + \/1 — Olt_l - O-tE

Slide from Jia-Bin Huang DDIM [Song et al. 2021]
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Slide from Jia-Bin Huang DDIM [Song et al. 2021]
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Slide from Jia-Bin Huang

4CI(Xt|XO)[ w(t) [l — ||% | ]

I [ Encoding ] [ Encoding ] [ Encoding ]

XO_>X1_>X2 oo 0 —XT
q(X¢|X¢—1,X0)

, o/ T)
2
,oi 1) DDIM sampler: Set 6/ = 0
+ \/1 — 1€ Deterministic

0+\/1—C¥t_1@

generative process!

DDIM [Song et al. 2021]



CIFARI10 (32 X 32) CelebA (64 X 64)
/10 20 50 100\ (1000 )}~ 10 20 50 100"\ (1000

DDIM 13.36 6.84 4.67 4.16 4.04 || 17.33 13.73  9.17 6.53 39l

DDPM \367.43 13337 3272 9.99 3.17 JN299.71 183.83 71.71 45.20/ | 3.26

Slide from Jia-Bin Huang DDIM [Song et al. 2021]



DDIM reduces the sampling steps significantly

« Creates the outline of the sample after only 10 steps (DDPM needs hundreds)

sample timesteps sample timesteps




Progressive Distillatio "

Pdata (X)

Slide from Jia-Bin Huang



Progressive Distillation

&
O
a

Student

Slide from Jia-Bin Huang



Slide from Jia-Bin Huang



Progressive Distillation

Z3/4 = f(z1;m)5
: Distillatio>

Z)/2 = f(Z3/4;77)<
b Distillatio> >x = fl2zy1;0)

4 b 4 V.
=10 X X X

=1

N
™
N

<

14

Z1/4 = f(z1/2;77)<

Distillation

14

X = ]0(21/4;77)<

Salimans et al, Progressive distillation for fast sampling of diffusion models



https://arxiv.org/pdf/2202.00512.pdf

Progressive Distillation: Results

(a) 256 sampling steps (b) 4 sampling steps (c) 1 sampling step

Figure 10: Random samples from our distilled LSUN bedrooms models, for fixed random seed and
for varying number of sampling steps.



Guided Distillation

00 e,

Pdata (X)

Slide from Jia-Bin Huang



Guided Distillation
Vlog py<xt|y>=[<1 — ¥)Vlogp(x,) + VVlogp(XtIy)J

Conditional score Unconditional score Conditional score

?
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> SO (Xt) t; ®)
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i W%
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7 : e
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2 R |

Estimated score

~—t

> SO(Xt' L, y)

Estimated score

v

U

—

Pdata (X)

et
Slide from Jia-Bin Huang



Guided Distillation

Classifier-free guidance
distillation

00 e,

Pdata (X)

Slide from Jia-Bin Huang [Meng et al. 2023]



Guided Distillation

(a) 2 denoising steps (c) 8 denoising steps

Slide from Jia-Bin Huang [Meng et al. 2023]



(X¢,

fo(Xe, t
fo (X, t")
f9 (XTr T)
. /
min d(fEMA (X¢, t), fo (X1, t ))
target network  online network
pdata X (teacher) (student)

Slide from Jia-Bin Huang [Song et al. 2023]




Slide from Jia-Bin Huang

. ‘ ' R N ~ e
Xo,0) &0 0 oty @G

fo(Xe, t
fo (X7, t")
f9 (XTr T)

min d(fEMA (X¢, 1), fo(X,r, t'))

0

target network  online network
(teacher) (student)

[Song et al. 2023]



ot (X¢, tj(xt,,t’) .(XT, 15')
o (Xt
fe(Xt’»t')

f9 (XTr T)

Single-step generation:

O Q.7

U
\ fo(x7,T) /

Slide from Jia-Bin Huang [Song et al. 2023]




ot (X¢, tj(xt,,t’) .(XT, 15')
o (Xt
fe(Xt’»t')

f9 (XTr T)

Multi-step generation;— 144 noice

7\ \
(xtr t) (XTJ )
f9 (Xtr t)
f9 (XTr T)

Slide from Jia-Bin Huang [Song et al. 2023]




Latent Consistency Models

Consistency Models

Latent Consistency Models: combine the above idea with Latent Diffusion Models

Song et al., Consistency Models Luo et al, Latent Consistency Models: Synthesizing High-Resolution Images with Few-step Inference



https://arxiv.org/pdf/2303.01469.pdf
https://openreview.net/pdf?id=duBCwjb68o

Latent Consistency Models: Results

FID / Inference Time

200+ 1-Step —e— DPM-Solver++
175 - ~4— LCM (Ours)

150 -
125+

()]
i 100 -
15
20

1-Step

8-Steps
—e

0 2 4 6 8 10
Inference Time (second)

2-Steps Inference 1-Step Inference



—J

Q

Slide from Jia-Bin Huang 4-step inference LCM [Luo et aI. 2023]



Latent Consistency Models + LoRA

Slide from Jia-Bin Huang LCM-LoRA [Luo et al. 2023]



Low-rank Adaptation: LoR A

[Hu et al. 2021]

L1

U-Net
Pretrained 2

diffusion model§§t/

Slide from Jia-Bin Huang



Low-rank Adaptation: LoRA

[Hu et al. 2021]

1

9 Computationally expensive

| I . ]

U-Net High storage requirement
Pretrained

diffusion model

- -— 1 -
0, 0, 0, 6,
| I | I | I L1
U-Net U-Net U-Net U-Net
PixelArt Lego IKEA instructions Anime

Slide from Jia-Bin Huang



Low-rank Adaptation: LoRA

[Hu et al. 2021]

- Finetuning cross-attention layers
H k k
L1
U-Net

Pretrained d _I_ d AW

diffusion model

- -— 1 -
0, 0, 0, 6,
| I | I | I L1
U-Net U-Net U-Net U-Net
PixelArt Lego IKEA instructions Anime

Slide from Jia-Bin Huang



Low-rank Adaptation: Lo RA

[Hu et al. 2021]

- Finetuning cross-attention layers
— r A ¢
U-Net 4
Pretraine
diffusion model d + d B

- -— 1 -
0, 0, 0, 6,
| I | I | I L1
U-Net U-Net U-Net U-Net
PixelArt Lego IKEA instructions Anime

Slide from Jia-Bin Huang
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| I —
(Style-LoRA)
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1] _
(LCM-LoRA)
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| I -

= 0OLcM — Bbase

Slide from Jia-Bin Huang LCM-LoRA [Luo et al. 2023]



LCM-LoRA-
SD-V1.5

LCM-LoRA-
SDXL

LCM-LoRA-
SSD-1B

Slide from Jia-Bin Huang
LCM-LoRA [Luo et al. 2023]
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Adversarial Diffusion Distillatio

O
O O O 6
O
O O O lIJ-_INet
O O O Pretrained model  Student model
& 0 O O
O
o 00 e,
3 O
@ @O (X)

Slide from Jia-Bin Huang
[Sauer et al. 2023]



Adversarial Diffusion Distillation

—
U-Net U-Net
O Pretrained model Student model

O O

Slide from Jia-Bin Huang [Sauer et al. 2023]
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Slide from Jia-Bin Huang

Adversarial Diffusion Distillation

Ao
0] ||¢

L1 T —
U-Net U-Net
Teacher model Student model Discriminator

Problem:
O Denoised image predicted by the teacher:
blurry

Idea:

Use both adversarial loss and
score distillation loss

[Sauer et al. 2023]



Slide from Jia-Bin Huang

Adversarial Diffusion Distillation

Ao
0] ||¢

L1 T —
U-Net U-Net
Teacher model Student model Discriminator

Problem:
O Denoised image predicted by the teacher:
blurry

Idea:

Use both adversarial loss and
score distillation loss

[Sauer et al. 2023]
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Recent Improvements



Recall Stable Diffusion (SD v1.4,5D v1.5,5D v2.1)

-
)
|

[atent data



Improved SDXL pipeline

-------- Unrefined ceececcc-- Refined VAE- Final
Base " Latent Refiner Latent Decoder Image

128 | 128 | 128 1024
X X - P X r— X
128 128 128 1024
—
b e . ) R, ' \

Noise

-l - -
- - —
-l - -
-

A

Prompt

e Separate refiner model
* Two text-encoders
* Bigger U-net with more attention blocks and higher number of parameters

https://towardsdatascience.com/the-arrival-of-sdx|-1-0-4e739d5cc6c7



https://towardsdatascience.com/the-arrival-of-sdxl-1-0-4e739d5cc6c7

2500M

2000M
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Params (Millions)
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500M

SDXL

SD 1.x

Number of UNeT Parameters Number of Text Encoder Parameters

800M

700M
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500M

400M
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300M
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N -
oM

SD 2.x SDXL 1.0 OpenAl CLIP L/14(SD 1.x) OpenCLIP H/14(SD 2.x)

https://towardsdatascience.com/the-arrival-of-sdx|-1-0-4e739d5cc6c7

CLIP L/14 + G14(SDXL 1.0)


https://towardsdatascience.com/the-arrival-of-sdxl-1-0-4e739d5cc6c7
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SDXL: Improvements in generation quality
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SDXL w/ Refiner SDXL Base SD1.5
Model

Comparing user preferences
between SDXL and
previous models.

Imagination

Writing & Symbols
Quantity

Complex
Fine-grained Detail
Perspective

Style & Format
Simple Detail
Linguistic Structures

Properties & Positioning
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Frequency —»
Figure 11: Preference comparisons of SDXL (with refinement model) to Midjourney V5.1 on complex prompts.
SDXL either outperforms or is statistically equal to Midjourney V5.1 in 7 out of 10 categories.

©
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Improving Latent Diffusion Models for High-Resolution Image Synthesis



https://arxiv.org/abs/2307.01952

SDXL: Results

’A propaganda poster depicting a cat dressed as french ‘a close-up of a fire spitting dragon,
emperor napoleon holding a piece of cheese.’ cinematic shot.’
w0
v
Q
>
iy
Q|
—~
7]
>
Q
7]

Figure 4: Comparison of the output of SDXL with previous versions of Stable Diffusion. For each prompt, we
show 3 random samples of the respective model for 50 steps of the DDIM sampler [46] and cfg-scale 8.0 [13].
Additional samples in Fig.|14




SDXL: Results

e

cat patting a crystal ball
with the number 7 written
on it in black marker

photograph of
ared ball on
a blue cube

orange

DEEPFLOYD IF DALLE-2 BING IMAGE CREATOR MIDJOURNEY v5.2 SDXL v0.9



Prompt: A beautiful painting of flowing colors and styles forming the words "The SD3 research paper is here!",
the background is speckled with drops and splashes of paint

https://stability.ai/news/stable-diffusion-3-research-paper



https://stability.ai/news/stable-diffusion-3-research-paper

SD3: Results

._16 - "

Prompt: A massive alien space ship that is shaped like a pretzel.

Prompt: A kangaroo Prompt: An entire Prompt: A Prompt: This Prompt: A car made Prompt: Heat death
holding a beer, universe inside a cheeseburger with dreamlike digital art out of vegetables. of the universe
wearing ski goggles bottle sitting on the juicy beef patties captures a vibrant line art
gnq pas_smnately shelf at walmart ;nd melted chee;e kaleidoscopic bird in
singing silly songs. on sale. sits on top of a toilet

that looks like a a lush rainforest



Local Customization of Diffusion Model

Diffusion Model Image Space

Input images m a bucket settang a hatreut

157
Ref: DreamBooth, Ruiz et al., CVPR 23



DreamBooth: Local Customization of Diffusion Model

o | | |

* Fine-tune the diffusion model

* Challenges of compute expense

158
Ref: DreamBooth, Ruiz et al., CVPR 23



DreamBooth with Low Rank Approximation (LoRA)

“[V’] Dog”

LoRA Adapter

159 Ref: DreamBooth, Ruiz et al., CVPR 23
LoRA, Hu et al., 21



Low Rank Approximation (LoRA)

LoRA weights, W, and Wy, represent AW

Forward pass with
updated model

a /+\G

— Pretrained

weights
LoRA Adapter

160

How to use LoRA
Fine-tuning for
Stylization?

Ref: LoRA, Hu et al. 2021



DreamBooth with Low Rank Approximation (LoRA)

DreamBooth
using LoRA
on SD v1.5

LoRA Adapter

Fine-tuning on
Subject

161



DreamBooth with Low Rank Approximation (LoRA)

DreamBooth
using LoRA :: —p
on SD v1.5

LoRA Adapter

Fine-tuning on
Subject in the Acropolas n o doghouse

S| englora =" Doesn
I
on SD v1.5 T work!
LoRA Adapter
A statue in [S] style Fine-tuning on L
” Style
o] “matte black sculpture y A cat in [S] style; A men in [S] style Old lady in lS style
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DreamBooth with Low Rank Approximation (LoRA)

DreamBooth
using LoRA :: —p
on SD v1.5

LoRA Adapter

Fine-tuning on
Subject in the Acropolas n o doghouse

S| englora =" Doesn
I
on SD v1.5 T work!
LoRA Adapter
A statue in [S] style Fine-tuning on L
” Style
] matte black sculpture y A cat in [S] style; A men in [S] style Old lady in lS style
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LoRA on SDXL

DreamBooth
. ———
=P| using LoRA - =

on SDXL

LoRA Adapter
A statue in [S] style
[S]: “matte black sculpture”
A cat in [S] style; A men in [S] style; Old lady in [S] style
Works with
SDXL!

164 Ref: SBitd s §F'BAT Huang



DreamBooth LoRA on SDXL for Stylizations

A bicycle in [S] Golden gate A bird in A boat in A hatin A pianoin
Style Reference Style bridge in [S]Style  [S] Style [S] Style [S] Style [S] Style

2o\
(& A

watercolor painting
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Can we Merge Content and Style Models?

Content Images
“A [V] dog”

100 [V] with angel wings [\/] in Wiard outfit [V] as nurse



Can we Merge Content and Style Models?

Content Images Style Image

“Flowers in [S] style”

N J

DreamBooth DreamBooth )
Content-only Style-only

Model Model

=

167 : ' £ £
[V] with angel wings [V]in wizard outfit [V] as nurse penguin in [S] style bike in [S] style



Can we Merge Content and Style Models?

Content Images Style Image
“A [V] dOg ”

“Flowers in [S] style”

\ / Content + Style \ /
Style
Content
Model > . Model
®

A
By ! v
y A

[V] with angel wings [V]in wizard outfit [V] as nurse pengum in [S] style bike in [S] style
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Can we Merge Content and Style Models?

Content Images Style Image
“A [V] dogn

“Flowers in [S] style”

\ J ZipLoRA \ J

Style
Content
Model ‘LCELS\ Model

“[Vldogin[S] “[V] dog playing “Sleeping [V] “[V] dog wearing
169 style” with a ball in [S] dogin [S] style” acrownin[S]
style” style”




ZIpLoRA: Alignment Loss

170

_______________________________________________

s Ml &
_________ e S SE
AW e AW
1 N
a

_______________________________________________

Key Idea: Alignment Loss

Make m, and mg orthogonal
with each other!




Any Subject in Any Style

Styles:[S]__. 4

Subjects:

171 “[V] subject in [S] style”
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A [V] toyin

Direct

arithmetic

merge

Joint
Training

StyleDrop

watercolor
painting style

-

Ours

kid line
drawing style

flat cartoon
illustration style

Ref: StyleDrop, Sohn et al., NeurlPS 23



Please fill in the Feedback Form at:

https.//virajshah.com/sc395-feedback4

Thank You!
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