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Progressive Distillation
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X = f(Zl/4;77)<

Salimans et al, Progressive distillation for fast sampling of diffusion models



https://arxiv.org/pdf/2202.00512.pdf
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Flow Matching

Latest and the Best
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Daita DiStribuition
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Maximum Likelilhood
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Maximum Likelihood
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Masdimum Likelihood
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Masdimum Likelihood
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Masdimum Likelihood
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Z ~ Dpase(Z) X = G(z) (x) = %pbase(%)

z =G 1(x)
pbase(z) [X — ZZJ (X)
11 11
0.5 0.5
Z > X
0 1 2 0 1 2

4 I
» Generator
A Ge %

pbase (Z) Slide from Jia-Bin Huang (X)



Z ~ Dpase(Z) X = G(z) (XD)AX = py...(2") Az

pbase(z) (X)
— \

Lz, -

!/ / > Z " p >

Z Z + Az X X + Ax
e R

Generator

P> G —
\_ 0 J

pbase (Z) Slide from Jia-Bin Huang (X)



2~ Dhase® X =6@) &) = pyase(z) B2

pbase(z) (X)
— \

Lz, -

!/ / > Z " p >

Z Z + Az X X + Ax
e R

Generator

P> G —
\_ 0 J

pbase (Z) Slide from Jia-Bin Huang (X)



Z ~ Ppase (Z)

pbase(z)

Az

<+“—>

7z 7' + Az

> Z

Pbase (Z)

el \

0z

X =G(z) (X)) =Ppase(Z)| =
0xX
¢ e
®
t o ® o
) AXx
x' X’+A;
4 I
Generator
—
Gg
- J

Slide from Jia-Bin Huang

(x)

N



Z ~ Phase(2) [X1] =G ([le)

Change-of=variable
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Masdimum Likelihood
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Masdimum Likelihood
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Masdimum Likelihood
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Masdimum Likelihood
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Masdimum Likelihood
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Masdimum Likelihood
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Residual flows

Xke1 = Xk + 0 u(Xy)
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Residual flows

Xpe1 — Xk = 6 u(Xy)
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Residual flows
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Residual flows

Xk+1 — Xk _ u(xy) §=1/K K->
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Changes in position Vector field
t =0 Neural Ordinary Differential Equation
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Neural Ordinary Differential Equation dXt
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p(z(t))

Continuity equation / Transport equation
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Match the “flow” u,(x;) |

Lem = E¢, pt(xt)[Hvt(Xt; 0) — ut(xt)”% ]

Probability path Neural network Vector field

Do = Phase(Z) (&) We don’t know

Probability path  p,(xX;)
P1 = pp(x)

Vector field U (X¢)
Slide from Jia-Bin Huang



Flow matching (FM) objective

Lem = E¢, pt(xt)[Hvt(Xt; 0) — ut(xt)”% ]

Probability path Neural network Vector field

Probability path pt(xt)=f . (X¢|z) q(z) dz
!

Conditional probability path

Po P1

Stide from Jia-Bin Huang > 1 [Lipman et al. 2023]




Flow matching (FM) objective

Lem = E¢, pt(xt)[Hvt(Xt» 0) — ut(xt)”% ]

Probability path Neural network Vector field

Probability path pt(xt)=f . (X¢|z) q(z)dz

Conditional probability path
Example: Let z = x4

p,(X|z) = N(x| tx,, (to — t + 1)?)

Po P1

Slide from Jia-Bin Huang - T

[Lipman et al. 2023]



Flow matching (FM) objective

Lem = E¢, pt(xt)[Hvt(Xt» 0) — Ut(Xt)”% ]

Probability path Neural network Vector field

Probability path pt(xt)=f . (X¢|z) q(z)dz

Conditional probability path " ”
just move toward x4
x; —(1—-0)x

1—(1—-o0)t

Example 1: Let z = x4
p,(X|z) = N(x| tx,, (to — t + 1)?) u,(x|z) =

X1
'

Po P1

Stide from Jia-Bin Huang > 1 [Lipman et al. 2023]




Flow matching (FM) objective

Lem = E¢, pt(xt)[”vt(xt: 0) — Ut(Xt)”% ]

Probability path Neural network Vector field

Conditional Flow matching (CFM) objective

Lcrm = Et,pt(xt|z)[”vt(xt: 0) — us(x¢|z)||5 ]

Po P1

Stide from Jia-Bin Huang > 1 [Lipman et al. 2023]




Flow matching (FM) objective

Lem = E¢, pt(xt)[”vt(xt: 0) — Ut(Xt)”% ]

Probability path Neural network Vector field

Conditional Flow matching (CFM) objective

Lerm = E¢, q(z),‘pt(xdz)‘” [V (X¢, 0) — ut(thz)H% |

Po P1

Stide from Jia-Bin Huang > 1 [Lipman et al. 2023]




Flow matching (FM) objective

Lem = E¢, pt(xt)[”vt(xt: 0) — Ut(Xt)”% ]

Probability path Neural network Vector field

Conditional Flow matching (CFM) objective

Leem = Et @), 0, xp2) LV (Xe, 6) —

Po
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P1
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Flow matching (FM) objective

Lem = E¢, (xt)[”vt(xt: 0) — ut(xt)”% ]
Neural network Vector field

Conditional Flow matching (CFM) objective

Lerm = Ee o), 0, e L 7e (X, 0) — 1 (X¢|2)]]5 ]

VoLem(6) = VgLcrm(6)

Stide from Jia-Bin Huang > 1 [Lipman et al. 2023]



Conditional Flow matching (CFM) objective
Lerm = Et, 42, pt(xt|z)[”vt(xt» 0) — ut(thz)H% |

Example 2: Independent coupling

Conditional distribution q(z) = q(Xp)q(x1)

Conditional probability path p,(x]z) = N(x|tx; + (1 — t)Xq, 02%)
X1

\ 5

p 0 . p]_ Rectified flow

Stochastic interpolant

Stide from Jia-Bin Huang - T Indep. CFM [Tong et al. 2023]



Conditional Flow matching (CFM) objective
Lerm = Et, 42, pt(xt|z)[‘|vt(xt: 0) — ut(thz)H% |

Example 2: Independent coupling

Conditional distribution q(z) = q(Xp)q(x1)
Conditional probability path p,(x]z) = N(x|tx; + (1 — t)Xq, 02%)

Conditional vector field u:(x|z) = x4 — Xg
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0
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Indep. CFM [Tong et al. 2023]



Conditional Flow matching (CFM) objective
Lerm = Et, 42, pt(xt|z)[”77t(xt» 0) — ut(thz)H% |

Example 3: Optimal transport CFM

Conditional distribution q(z) = m(Xg,Xq)
X
X, 1
AO
Of
O O
po [ = pl Multisample FM
—O [Pooladian et al. 2023]

OT-CFM [Tong et al. 2023]

Slide from Jia-Bin Huang - T



Conditional Flow matching (CFM) objective
Lerm = Et, 42, pt(xt|z)[‘|vt(xt: 0) — ut(thz)H% |

Example 3: Optimal transport CFM

Conditional distribution q(z) = m(Xg,Xq)
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Conditional Flow matching (CFM) objective
Lerm = Et, 42, pt(xt|z)[‘|vt(xt: 0) — ut(thz)H% |

Example 3: Optimal transport CFM

Conditional distribution q(z) = m(Xg,Xq)

Conditional probability path p,(x]z) = N(x|tx; + (1 — t)Xq, 02%)

Conditional vector field u:(x|z) = x4 — Xg
X
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Flow Matching in Action

credits: Jia-Bin Huang; Link: https://www.youtube.com/watch?v=swKdn-qT470
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Flow Matching Dynamics
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Figure 3. A close-up view of how rectification “rewires” interpolation trajectories. (a) Interpolation trajectories with

intersections. (b) Averaged velocity directions at intersection points (red arrows). (¢) Trajectories of the resulting rectified
flow.

Source: https://rectifiedflow.github.io/blog/2024/intro/
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Conditional Flow matching (CFM) objective

Lerm = Et, 42, pt(xt|z)[Hvt(Xt: 0) — ut(thz)H% |

Conditional Flow Matching OT Conditional Flow Matching

N T gl N
AN A
A A
A AA

A AA

OT-CFM [Tong et al. 2023]



Conditional Flow matching (CFM) objective

LCFM — Et,q(z), De(X¢|Z) |vt(Xtr H) _ ut(thz)HZ

Conditional distribution

q(z) = q(X0)q(X1)

— Conditional vector field
us(x]z) = X1 — Xg
L,
T Lcrm
vt (Xt; 0)

Neural network
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Conditional Flow matching (CFM) objective

LCFM — Et,q(z), De(X¢|Z) |vt(Xtr H) _ ut(thz)HZ

Conditional distribution

q(z) = q(X0)q(X1)

— Conditional vector field
us(x]z) = X1 — Xg
L,
T Lcrm
vt (Xt; 0)

Neural network

SH'U'E'FI'U'I'I'I'J'IH’BTI'I'HUdHQ



ow matching

Conditional vector field
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Encoding LZ
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Neural network
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Slide from Jia-Bin Huan§eural network




ow matching

iffusion

Conditional vector field

1
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Neural network
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Connection between Diffusion and Flow matching

« Similar training objectives derived using different outputs from the network

Network

Output Formulation MSE on Network Output
€-prediction € € — €||3
x-prediction X = (z; — 0:€) /oy % — x||2 = e ||€ — €||2
V-prediction V= i€ — 04X ¥ —v||2 =a2(e* +1)?%||€ — €|2
u-flow

matching a=é-% & — a3 = (V2 + 1)2jé — €3
vector field

120 Source: https://diffusionflow.github.io



https://diffusionflow.github.io/
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Imagine you want to use your trained denoiser model to transform random noise into a

datapoint. Recall that the DDIM update is given by z, = a ;X + o ,€. Interestingly, by
rearranging terms it can be expressed in the following formulation, with respect to several sets

of network outputs and reparametrizations:

z, = Z; + Network output - (n, — ;) (5)
Network Output Reparametrization
X-prediction Z: = Zy/orand gy = a; /oy
é-prediction Z: = z;/a;and g, = 04/ oy
u-flow matching vector field Z: = 2:/(ay +0y) and ny = 0/ (as + 03)

Remember the flow matching update in Equation (4)? This should look similar. If we set the
network output astrinthe lastlineandleta; =1 — t, 04 = t,we have z; = z; and n; = ¢,
which is the flow matching update! More formally, the flow matching update is a Euler sampler
of the sampling ODE (i.e., dz; = udt), and with the flow matching noise schedule,

Diffusion with DDIM sampler == Flow matching sampler (Euler).
Source: https://diffusionflow.github.io



https://diffusionflow.github.io/

DiT Architecture
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Attention Module
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Diffusion Transformers Architecture (DiT)
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Cross Attention Module

Image  — §|E|¥|"

Text —

il soﬁmax( \/_ ,dim = — 1)
d

IIIIITIIIII C!)«II.III

Dense Layer | mmmi» Output: ¥ € RV*%
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MMDIT architecture

[t
|t ]
noise level token
. | text embeddings | limage embeddings |
* Separate paths for text and image tokens R R
4'[ modulation ] [ modulation ]<7
« Both representations vary across the network ' [ tinear ] [_tinear
N — | —
!
Q K \Y
Joint Attention
! | !
! [ linear ] [ linear :
4'[ modulation ] [ modulation ]'— ERepeat
! l ] | dtimes
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_____________ i_-_-_-__________________________t______________
| | | |
i 1
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1 |

MMDIT architecture in SD 3.5 . ¢ ) T
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l
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@ = @
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MMDIT architecture in SD 3.5

( Caption )

C _curgna X cupL/ii4a (0 TSXXL )

77 + 77 tokens

7 AR
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channel ( Linlear )

Pooled
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( MLP )
I ¢ MM-DiT-Block 1 )
(Sinusoidal Encoding) [ [
| { MM-DiT-Block 2 )
( Timestep )
{ MM-DiT-Block d )
{  Modulation )
1|
(__ Linear )
|
( Unpatching )
Output
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Please fill in the Feedback Form at:

https.//virajshah.com/sc395-feedback5

Thank You!
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